Pacific halibut larval dispersal in the north Pacific **Ocean and Bering Sea**

Lauri Sadorus¹, Esther Goldstein², Josep Planas¹, Janet Duffy-Anderson² ¹International Pacific Halibut Commission ² Alaska Fisheries Science Center, NOAA Fisheries

> 10th International Flatfish Symposium ATTION OF AND ATMOS

Saint-Malo, France 11-16 November 2017

NOAA

ARTMENT OF C

Pacific halibut life history

- Long-lived up to 55 years
- Up to 500 pounds (227 kg) and 2.4 m

- Study focus: Larval (pelagic) phase - first 6 months

Study objectives

- Redefine larval distribution
- Connectivity between ocean basins
- Influence of environmental factors on:
 - Larval year-class strength
 - Organism size
 - Degree of connectivity
 - Recruitment to demersal stage

Pacific halibut resource range

North Pacific continental shelf

Source: Wikipedia. Background image from NASA World Wind

Study area

Pelagic drift to the west Counter-migration to the east

Vertical distribution

- Yolk-sac phase¹ >300 m depth
- Near-surface distribution consistent with yolk sac absorption at ~12.75 mm length¹
- At first feeding, top 100 m

¹Larval staging by length based on laboratory studies by McFarlane et al. (1991) and Liu et al. (1993)

Ocean basin connectivity

- Westward flowing Alaska Coastal Current through Aleutian Passes^{1,2}
- Unimak Pass shallow, shelf connector¹
- Past assumption: spawning in each basin determined recruitment there³

¹Stabeno et al. (2002) ²Bailey et al. (2008) ³Thompson and VanCleve (1936)

Predicting larval catch and recruitment

Linear regression models used to find predictors

- Variables:

- Gulf of Alaska (GOA) larval catch
- Bering Sea larval catch
- Abundance of 2-year olds in the Bering Sea
- Catch weighted mean length by month
- January SST in the GOA and Bering Sea
- May SST in the Bering Sea
- Summer bottom temperature in the Bering Sea
- Extent of sea ice cover
- North Pacific Index (NPI)¹ Alaska Coastal Current
- Pacific Decadal Oscillation (PDO)² temperature driven

¹ NPI defined by Trenberth and Hurrell (1994) ² PDO defined by Mantua et al. (1997) Catch

Environment

Regression results

Bering Sea larval catch ~ GOA larval catch + NPI
 (Adj R²= 0.20, p-value=0.031)

- 2YO Bering Sea abundance ~ GOA larval catch
 (Adj R²=0.11, p-value=0.039)

 No variables or combination of variables significant in predicting GOA larval catch

Size and temperature

2-year old length (BS) ~ summer bottom temp at age-1
(Adj R²=0.595, p-value=0.0002)

 Neither larval length nor temperature in year 0 was significant

Bering Sea temperature

- Warm stanza 2001-2005
- Cool stanza 2007-2013

Data source: http://www.beringclimate.noaa.gov/data/BCresult.php

Comparing warm and cold years

Warm

- Larvae in the east in Bering Sea
- 2YO widely distributed

Cold

- Larvae dispersed along 200 m edge
- 2YO concentrated in E Bristol Bay

Differences between stanzas

- t-test for means (sqrt trans)
- F-test for variance (sqrt trans)

		Warm	Cool	p-value	Significant
Bering Sea larval catch	Mean	7.1	10.7	0.215	
	Variance	57.6	40	0.066	
GOA larval catch	Mean	30.6	7.6	0.093	
	Variance	1570.4	17.3	0.002	**
2YO abundance	Mean	22.7	2.7	0.034	**
	Variance	436.4	4.9	0.013	**

- Larval catch not significantly different
- 2YO abundance higher in warm years

- Variability greater in warm years (GOA)

Principle component analysis

- First 2 PCs significant
- PC1 temp driven
 - PC2 catch driven
 - GOA larval catch and 2YO in same quadrant
 - Bering Sea larval catch and cooler temps

Principle component analysis

- First 2 PCs significant
- [™] PC1 temp driven
 - PC2 catch driven
 - GOA larval catch and 2YO in same quadrant
 - Bering Sea larval catch and cooler temps

Principle component analysis

- First 2 PCs significant
- ~ PC1 temp driven
 - PC2 catch driven
 - GOA larval catch and 2YO in same quadrant
 - Bering Sea larval catch and cooler temps

General Conclusions

- 1. GOA larvae a contributor to eastern Bering Sea recruitment
- Variability in the Alaska Coastal Current affects larval transport and therefore recruitment in the eastern Bering Sea
- 3. Bering Sea-spawned larvae may not be a significant contributor to recruitment in the eastern Bering Sea.

General Conclusions

- 4. Temperature not a major factor in larval occurrence.
- 5. Temperature is a factor in growth of post settlement juveniles.
- 6. Temperature is related to larval distribution differences in the Bering Sea, possibly reflecting differences in currents.
- Ultimately, management decisions that affect the GOA spawning population could have implications to recruitment of Pacific halibut in the Bering Sea.

Next steps

Figure reproduced from Sadorus et al. 2016.

- Defining volume of transport through Unimak Pass
- Transport variability under different environmental conditions
- Spawn location where were Unimak Pass larvae spawned?
- Larval transport paths in the Bering Sea

Acknowledgements

- NOAA and IPHC biologists who tirelessly collected Pacific halibut data for all life stages throughout the years.
- Marine vessels and their crews who have bravely traversed the Gulf of Alaska and Bering Sea to collect the data.
- NOAA and IPHC technology staff for expertly handling thousands of catch records.

Flatfish ecology - from genomics to ecosystem

Symposium

CONTRACTOR CONTRACTOR

Thank you!