IPHC staff work plan for MSAB from May 2016 to May 2018

Allan Hicks Ian Stewart Bruce Leaman

Scientific Review Board Meeting June 21-22, 2016

What is the work plan?

- A plan describing tasks that will be carried out for the next 2 years
- A timeline for when work on those tasks will be done and be reported
- This is flexible and likely to be changed
 - With the guidance of the MSAB and SRB
- Presented in a sort of sequential order, but is not prioritized
- Mainly directed toward me, but this is not the only work that I will do
- Please ask if there is any confusion about definitions of terms

Management Strategy Evaluation

Past Accomplishments of MSAB

- The Commission created the MSAB and a stakeholder driven process
- There have been six meetings in three years, led by Dr. Steve Martell
- Identified a working procedure within the MSAB
 - Terms Of Reference, co-chairs, facilitator
- Members have become familiar with the MSE process
- A lot of analysis work
 - Defined goals for the halibut fishery and management.
 - Development of objectives and performance metrics from those goals.
 - Identified some management procedures
 - Developed an interactive tool (the Shiny application).
 - Discussions about single-area (coast-wide) and multi-area (spatial) models.
- Developed an outreach plan

Future plan

- Keep moving forward
- Use what has been learned to make progress on investigating management strategies
- Investigate current harvest policy
- Focus on uncertainty in the projections and achievement of objectives

Tasks

- 1. Become familiar with Pacific halibut biology and management
- 2. Review goals & objectives
- 3. Refine performance metrics
- 4. Investigate spatial model complexity
- 5. Identify management procedures
- 6. Closed-loop simulation programming
- 7. Development of educational tools
- 8. Further develop operating models

Gantt chart

Some working definitions

- Harvest strategy: The specifics of how catch is determined and adjusted. For example, harvest rates and a control rule.
- **Control rule:** Defined actions and reference points that provide an adjustment to the catch beyond the harvest rates. Often, the lower reference point is where catch is zero.
- **Management procedure**: Something that can be modified as part of determining a harvest policy. For example, a size limit or control rule.
- Management strategy or Harvest policy: A set of management procedures that define how the fishery is managed.

Task 1: Become familiar with halibut and past

- Provide myself with time to learn about the research and management of Pacific halibut
- Develop a process for planning, reporting, and reviewing projects
 - Involve the SRB to review products of the MSAB
 - A possible annual process
 - 1. May MSAB: Logistics, plan, develop
 - 2. June SRB: Present plan for endorsement
 - 3. Sept SRB: Review results
 - 4. Oct MSAB: Present reviewed results, make decisions
 - 5. Dec Interim meeting: Present draft results and decisions to Commission
 - 6. Jan Annual meeting: Present reviewed results and decisions

Task 1: Resources, Deliverables, Timeline

- Resources: myself
- Deliverables
 - Hopefully I can deliver in terms of a good understanding of the issues
- Timeline
 - Need a short amount of time initially
 - A specific focus on this for next few months
 - This task is ongoing as I will always be learning about
 - Past research,
 - Current methods,
 - Management goals
 - Stakeholders objectives

Task 2: Verify goals and objectives

- Review the current goals and objectives
- Identify the intention of each goal and objective
- Revise if necessary
- Translate into measureable objectives
 - 1. An outcome (what you want)
 - 2. A time frame (when you want the outcome)
 - 3. A probability (tolerance for failure)

Task 2: Five overarching goals

- Biological sustainability
- Fishery (all directed fisheries) sustainability and stability
- Assurance of access minimize probability of fishery closures
- Minimize bycatch mortality
- Serve consumer needs

Task 2: Resources, Deliverables, Timeline

- Resources
 - Myself and the MSAB members will need to review and refine
- Deliverables
 - A list of goals important to the management of the halibut fishery
 - A set of measureable objectives associated with those goals
- Timeline
 - Work on this at October 2016 meeting
 - But is always to be revisited

Task 3: Develop and refine performance metrics

- Performance metrics gauge performance relative to objectives
 - They are typically easily defined from the "outcome" of measureable objectives
 - It may be easy to define them as a probability
 - There may be more sophisticated metrics
- Determining important and useful metrics, as well as how to present them is key to
 - Communicating outcomes
 - Interpreting MSE results
 - Evaluating trade-offs
 - Making decisions on management procedures
- Many have already been defined

Task 3: Tables

• A table is one way to display results (from Pacific hake)

	Long-term (2033-2042)				
	Perfect	F ₄₀	F ₄₀ :0-500	F ₄₀ :0-375	F ₄₀ :180-375
Conservation					
Median average depletion	26%	39%	42%	45%	35%
Pr(B < B _{10%})	2%	6%	5%	5%	19%
Pr(B _{10%} ≤ B ≤ B _{40%})	77%	48%	47%	44%	41%
Pr(B > B _{40%})	21%	45%	49%	51%	41%
Yield					
Median average catch	242	199	203	216	233
Median AAV	32%	52%	41%	34%	19%
Pr(catch = 0)	1%	13%	12%	10%	0%
Pr(catch < 180)	44%	52%	50%	44%	21%
Pr(180 ≤ catch ≤ 375)	31%	27%	25%	56%	79%
Pr(catch > 375)	25%	21%	26%	0%	0%

Task 3: Figures

- Or a complicated figure to show the trade-offs (from Pacific hake)
- Trade-offs are typically between conservation, yield, and stability in yield
 - Conservation: relative spawning biomass
 - Yield: catch (CEY)
 - Stability in yield: average annual variability (AAV)

SRB 2016

Task 3: Resources, Deliverables, Timeline

- Resources:
 - Myself and the MSAB members
- Deliverables
 - Define consistent performance metrics and methods to display them so that everyone involved can easily interpret the results
 - Relate those metrics to past performance
 - For example, variability in catch can be determined from past catches

 This will be done along with Task 2

Task 4: Single-area vs multi-area models

- Model complexity in an important factor to consider
 - Determines what questions can and cannot be addressed
 - Single-area, coast-wide models can answer some important questions soon
 - Multi-area, coast-wide models will allow the investigation of area-specific dynamics
 - More uncertainty in more complex models
 - Increased time to develop more complex models
 - Affects run time
- Goals and objectives will be linked to this comparison

Task 4: Example of a comparison

Goal	Objective	Coast-wide	Spatial
Biological sustainability	Keep abundance above a certain level		
	Maintain abundance in a certain area above a certain level		
Fishery sustainability and stability	Catch >70% of historical 1993-2012 average		
	Catch in a specific area >70% of historical 1993-2012 average		

- This is a very simple example
- Additionally want to explore trade-offs of coding and running a spatial model

Task 4: Resources, Deliverables, Timeline

Resources

- Myself with review from MSAB
- Deliverables
 - Describe what is needed to develop single-area and multi-area operating models for use in closed-loop simulations, the resources needed to do so, and how much time it may take
 - Provide a table showing what measureable objectives each model addresses
 - Present strengths and weaknesses of single-area and multi-area operating models
- Timeline
 - Initial report in October 2016 with a follow-up in May 2017

Task 5: Identify management procedures to evaluate

- The purpose of a MSE is to evaluate combinations of management procedures that make up harvest policies
- Need to be specific and programmable
- The larger set can be reduced in size by eliminating poor performing ones using a simple and fast model (i.e., equilibrium model)
- Begin with the current harvest policy and expand from there
 - Outline the current harvest policy
 - Define the realized harvest policy
 - Identify other management procedures that are

Task 5: Resources, Deliverables, Timeline

- Resources
 - IPHC staff and MSAB members
- Deliverables
 - Outline of current HP and description of realized HP
 - A set of management procedures of interest with various options
 - Combinations of those management procedures to be evaluated
 - Management strategy/harvest policies
- Timeline
 - Current harvest policy first
 - Then add others
 - Begin by defining them before implementing them

Task 6: Develop a closed-loop simulation framework

- This is the engine of the MSE
- The process of
 - Simulating the dynamics (we cannot control)
 - Population fluctuations
 - Harvest dynamics
 - And the management process (we can control)
 - Data gathering
 - Assessment
 - Policy
 - Harvest dynamics, rates, etc.

Task 6: Closed-loop simulation

Task 6: Example of a closed-loop simulation

- Use one of the ensemble models as an operating model
- Project forward 90 years with stochastic recruitment
- Determine catch every year using **perfect knowledge** of the stock
 - No data or assessment needed
 - F_{SPR} coast-wide harvest rate, 30:20 control rule
 - Assumed a very simple allocation based on recent years

Task 6: Example of a closed-loop simulation

Task 6: Example of a closed-loop simulation

- Three performance metrics over a 10-year period starting 80 years in the future
 - Yield: Average catch
 - **Conservation:** Average relative spawning biomass
 - **Stability:** Average annual variation in catch (AAV)
- Quantiles (e.g., median) are calculated across simulations

Task 6: Preliminary results (comparison to equilibrium model)

- The MSAB has seen results from an equilibrium model
 - e.g., plots of yield as a function of fishing effort
- Here is an example of a closed-loop simulation looking at different $\mathsf{F}_{\mathsf{SPR}}$ rates
 - High SPR = Low effort
 - Low SPR = High effort
- Average long-term results should be similar to an equilibrium model

Task 6: Preliminary results (with uncertainty)

- Closed-loop simulations include many simulated trajectories with uncertainty
- This translates to uncertainty in the outputs (i.e., catch)
- We can begin to summarize outputs using probabilities
 - Probability that Yield < 40mlbs with SPR=0.4 is 10%

Task 6: Preliminary results (yield vs conservation vs stability)

- There are trade-offs to consider and these are typically between conservation, yield, and stability in yield
 - Conservation: relative spawning biomass
 - Yield: catch (CEY)
 - Stability in yield: average annual variability (AAV)

Task 6: Preliminary results (yield vs conservation vs stability)

• Uncertainty also plays an important role in understanding trade-offs

Task 6: Preliminary results (table of performance metrics)

	Long-term (2095-2105)						
	High Effort					Low Effort	
Perfect Information	SPR=10%	SPR=20%	SPR=30%	SPR=40%	SPR=50%	SPR=60%	
Conservation							
Median average RSB	22.6%	24.7%	27.3%	32.5%	42.9%	54.3%	
Pr(B < B _{20%})	1%	0%	0%	0%	0%	0%	
Pr(B < B _{30%})	100%	96%	76%	37%	8%	1%	
Yield (Total Removals)							
Median average TR	61.8	63.5	65.9	66.7	61.9	53.9	
Median AAV	27.4%	15.2%	9.8%	4.9%	2.8%	2.5%	
Pr(TR < 60)	52%	50%	45%	38%	46%	65%	
Pr(60 ≤ TR ≤ 80)	21%	22%	22%	33%	35%	26%	
Pr(TR < 80)	72%	71%	67%	72%	81%	91%	

Historical 1993-2012 average total removals is 83 million lbs. AAV from 1993-2012 is 6.7%

Task 6: Resources, Deliverables, Timeline

- Resources
 - Myself & IPHC staff, a programmer, computers, time
- Deliverables
 - A design of a framework for closed-loop simulations that can meet future needs
 - Code implementing this framework
- Timeline
 - Before October 2016, start designing the framework
 - Report progress in May 2017
 - Have a framework and code in October 2017
 - Evaluate the current realized HP's for Oct 2017

Task 7: Educational tools

- The interactive tool (Shiny app) seems to be of interest to stakeholders
 - Current tool (equilibrium model) is fast and still useful to eliminate some management procedures
 - Expand upon the equilibrium model (i.e., closed-loop simulations)
 - Outputs will change to report uncertainty
 - MSAB is more interested in results than education right now
- Materials
 - Website, descriptions, case studies, ...

Task 7: Resources, Deliverables, Timeline

- Resources
 - IPHC staff, a programmer, computers, time
- Deliverables
 - An application that allows users to provide inputs and see outputs
 - Materials than can help stakeholders better understand MSE
- Timeline
 - Design app while coding Task (
 - Release app in May 2018
 - Continually provide materials

Task 8: Further the development of operating models

- Multiple scenarios are useful to understand uncertainty
- A multi-area operating model will help to answer many area-specific questions
 - Need to identify those questions so that we can develop appropriate spatial model (Task 2 and Task 4)
- This is a complex task and will take time
 - It will be better to define scope and develop a design before starting programming

Task 8: Resources, Deliverables, Timeline

- Resources
 - A considerable amount of resources will be helpful
 - IPHC staff, a programmer, testers, computers, time, research
- Deliverables
 - Specifications of various operating models that satisfy the objectives
 - A design and the beginning of development
- Timeline
 - Designing in 2017
 - Programming in 2018

Potential missing topics

- Collaboration
 - with others implementing MSE
- PSC limits
 - I'm part of a working group
- Outreach
 - MSAB members are mostly doing this

