Biological and Ecosystem Science Program : Current and Future Research Activities

> SRB Meeting June 21, 2016

Josep V. Planas Program Manager

Personal background

Personal information:

- Born in Barcelona, Spain (Spanish citizen)

Education:

- BSc in Biology. University of Barcelona, Spain (1984)
- MA in Zoology, University of California, Berkeley (1988)
- PhD in Biology, University of Barcelona, Spain (1989)
- PhD in Fisheries, University of Washington, Seattle (1993)

Professional experience:

- Postdoctoral Fellow, University of Washington, Seattle (1993-1996)
- Postdoctoral Fellow, University of Barcelona, Spain (1996-1998)
- Assistant Professor, University of Barcelona, Spain (1998-2001)
- Associate Professor, University of Barcelona, Spain (2001-2015)
- Expertise in fish physiology and genomics

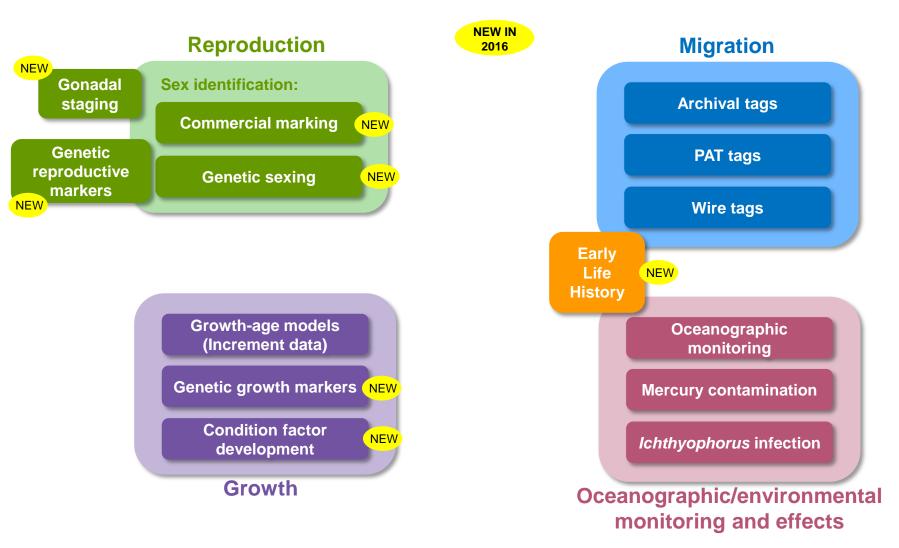
Personal background

Scientific areas of expertise in fish biology:

- Reproductive physiology
 - Gametogenesis
 - Final maturation and ovulation
- Growth and metabolism
 - Regulation of carbohydrate and lipid metabolism
 - Muscle growth characteristics
- Swimming physiology
 - Skeletal and cardiac muscle adaptations
 - Swimming performance
- Fish genomics
 - Development of genomic resources for flatfish
 - Application of genomic tools to flatfish biology

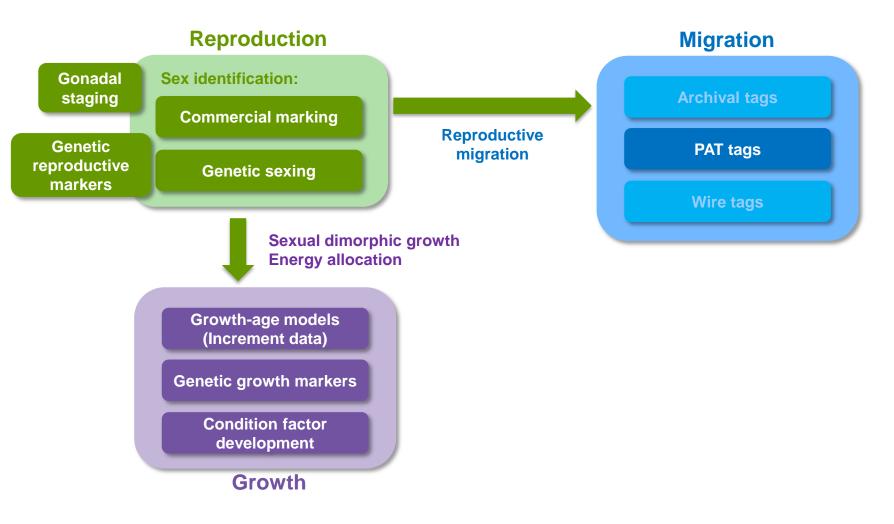
Biological research activities at IPHC

• What are the current objectives?

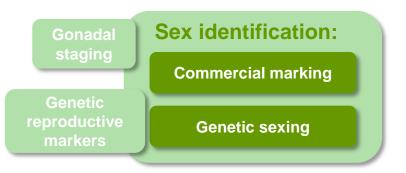

- Identify and address critical knowledge gaps in the biology of the Pacific halibut
- Understand the influence of environmental conditions on halibut biology
- Apply resulting knowledge to reduce uncertainty in current stock assessment models

• What have been traditionally the main research activities at IPHC?

- Migration. Adult movement across regulatory areas and to identify spawning grounds.
- Size and age structure of the population by body measurements and otholith ageing.
- Oceanographic monitoring.

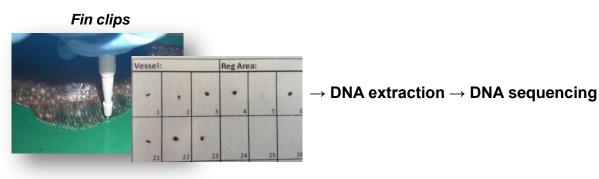


Current biological research activities



Reproduction studies

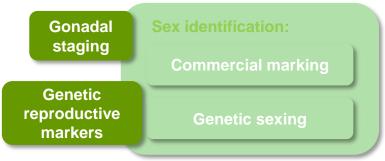
Reproduction: ongoing studies



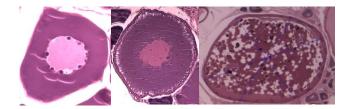
- We need to know the sex of extracted fish
 - Commercial marking at sea

Dorsal Cut (Female) Gill Plate Cut (Male)

- Identification of genetic markers for sex: Single Nucleotide Polymorphisms (SNPs)


Ongoing

We are mining for SNPs associated with sex (male vs female genetic signatures)


Transcript variation Genome alignment

Reproduction: ongoing studies

- Pilot study on ovarian staging: summer and winter samples

- Identification of molecular markers of ovarian and testicular function

- Identification of sex marker genes
- Identification of maturation marker genes

3. De novo Transcriptome Assembly Stats

ses	Total assembled bases	Average contig	Median contig length	Contig N50	Percent GC	Total trinity transcripts	Total trinity 'genes'	Sample ID
,854 OVA	74,513,854	1,240.16	582	2,494	48.89	60,084	48,573	R116-pool3
	88,917,698	1,014.53	489	2,004	47.10	87,644	74,363	R116-pool4

5.1 Mapping statistics

Sample ID	Danio rerio	uniprot	est others	total	unmapped	Danio%	uniprot%	est others%	unmapped%	
R116-pool3	18,426	4,259	37,267	60,084	132	30.67%	7.09%	62.02%	0.22%	OV
R116-pool4	23,644	5,539	58,303	87,644	158	26.98%	6.32%	66.52%	0.18%	TE

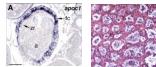
Reproduction: proposed studies

There are important knowledge gaps on the reproductive biology of the species

- Knowledge on reproductive development, maturation, fecundity, sex determination, environmental and hormonal control of reproduction, etc.
- Scientific-based criteria to identify reproductive status and potential.
- Updated estimates of age and size at maturation.
- Information on skipped spawning.

1. Characterization of the annual reproductive cycle

Objective: Understand temporal changes in reproductive development throughout an entire

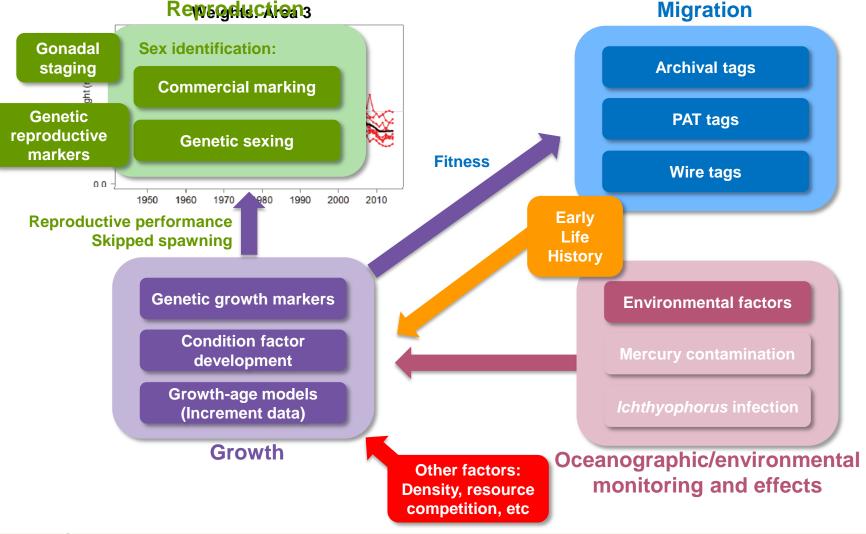

annual reproductive cycle.

- Histological assessment of gonadal development and maturation.
- Hormonal profiling (blood sex steroids) of the reproductive cycle.
- Gene expression (transcriptome) profiling of the reproductive axis.
- Gonadosomatic index (GSI) determinations throughout the reproductive cycle.
- Ultrasound monitoring of gonadal development and maturation.

2. Sex determination mechanisms

Objective: Understand the sex determination mechanism(s) in Pacific halibut.

- Identification of sex determining mechanism(s) and its onset during early development.
- Identification of environmental influences (temperature) on sex determination.
- Evaluate possible consequences on sex ratios at the population level.



Growth studies

Reweighter

Growth studies: ongoing studies

- Identification of molecular markers for growth

3. De novo Transcriptome Assembly Stats

Sample ID	Total trin	nity 'genes'	Total trinity	transcripts	Percent G	GC Contig N	50 Med	lian contig leng	gth Average	contig To	tal assembled bases	
R116-pool1		37,161		39,638	47	.76 1,:	198		385	721.49	28,598,382	WHITE MUSCL
R116-pool2		38,143		40,814	46	.02 1,0	096		398	691.85	28,237,340	LIVER
R116-pool5		70,693		86,561	47.	.17 2,:	104		495 1	1,051.87	91,050,930	RED MUSCLE
.1 Mapp	oing stat	istics										
Sa	ample ID	Danio rerio	uniprot	est others	total	unmapped	Danio%	uniprot%	est others%	unmapped%	6	
	ample ID 116-pool1	Danio rerio 13,873	uniprot 2,661		total 39,638	unmapped 38	Danio% 35.00%	uniprot% 6.71%	est others% 58.19%	unmapped% 0.10%	· · · · · · · · · · · · · · · · · · ·	JSCLE

29.28%

175

- Condition factor development: comprehensive set of measures on the physiological condition of fish

6.45%

64.08%

Length/weight relationships (Fulton's k, etc.).

5,579

Genetic growth markers

Condition factor development

Growth-age models

(Increment data)

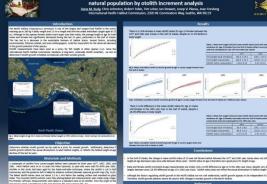
Growth

25,341

Morphometic/shape analyses.

R116-pool5

- Energy levels (fat content, metabolite levels, energy-sensing molecules).


55,466 86,561

- Assessment of muscle quality characteristics (muscle fiber composition).

Assessment of the val proxy for somatic grov classes (1977, 1987, 19 areas (2B, 3A and 4CD

RNA sequencing

0.20% RED MUSCLE

Fatmeter

Onaoina

SEAFOOL

Bioelectrical Impedance Analysis (BIA)

Growth: proposed studies

Little is known regarding what factors influence growth in this species

- Knowledge on growth processes and environmental effects. ٠
- Improved understanding in the possible role of growth alterations in the observed decrease in size at age.
- 1. Extensive catalogue of molecular markers for growth

Objective: Identify and validate molecular growth-related markers for growth studies.

- Identification of expressed sequences from skeletal muscle (white and red) and liver.
- Develop molecular assays to quantify gene expression of growth markers in relevant tissues.

2. Evaluation of growth patterns and effects of environmental influences

Objective: Identify molecular and biochemical profiles characteristic of specific growth patterns and evaluate potential effects of environmental influences.

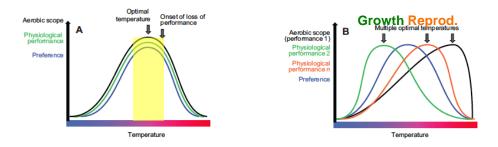
- Evaluation of different growth trajectories in the wild.
 - In BS NMFS trawl survey in 2016:
 - 75 fish <40 cm length
 - 75 fish 40-60 cm length
 - 75 fish 60-80 cm length

Characterization of molecular and biochemical growth markers in liver and muscle samples from age-matched individuals

- Establishment of different growth trajectories in juvenile fish in captivity.
 - Feeding/fasting

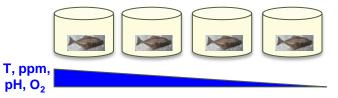
Fed

Normal rate



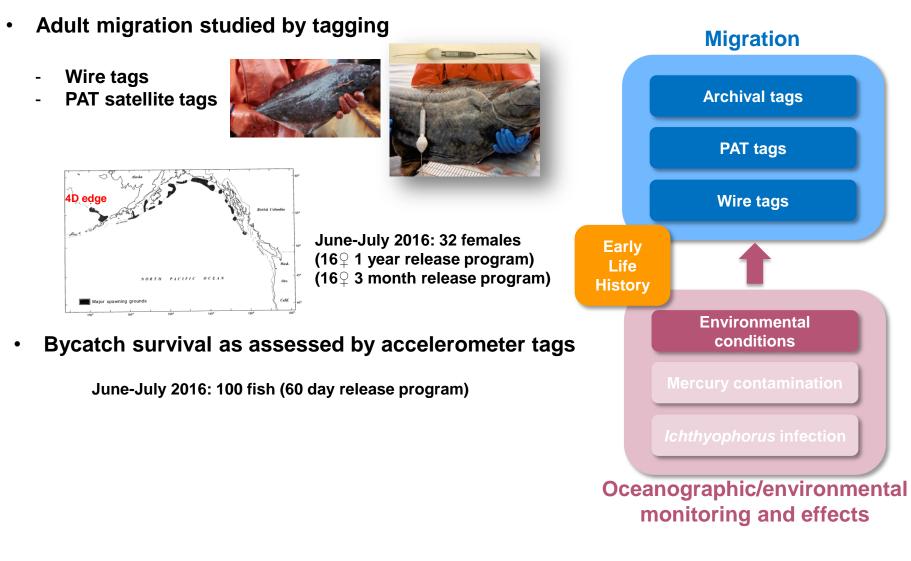
NOAA FISHERIES | ALASKA FISHERIES SCIENCE CENT

Growth: proposed studies


2. Evaluation of growth patterns and effects of environmental influences (cont.)

- Understand the basis of the sexual dimorphic growth in the Pacific halibut.
- Investigate the effects of environmental factors on growth performance.
 - Effects of temperature, salinity, dissolved oxygen and water pH on growth.
 - Identify the optimal environmental conditions for growth.
 - e.g. Temperature: Is there a relationship between growth rates and T changes?
 - What is the optimal T range for growth?
 - What is the relationship between aerobic scope, temperature and optimal growth?

- Is growth affected by changes in salinity, dissolved O₂ (hypoxia), water pH?


a) Evaluate growth after exposure to different environmental conditions

b) In the wild, correlate size at age with environmental levels and individual history

Migration: ongoing studies

Migration: proposed studies

- Improve our understanding on larval, juvenile and reproductive migration patterns.
- Incorporate additional sources of biological information on migratory patterns.

1. Towards a more comprehensive view on migration

Objective: Combine current tagging efforts with genetic and otolith and tissue composition analyses.

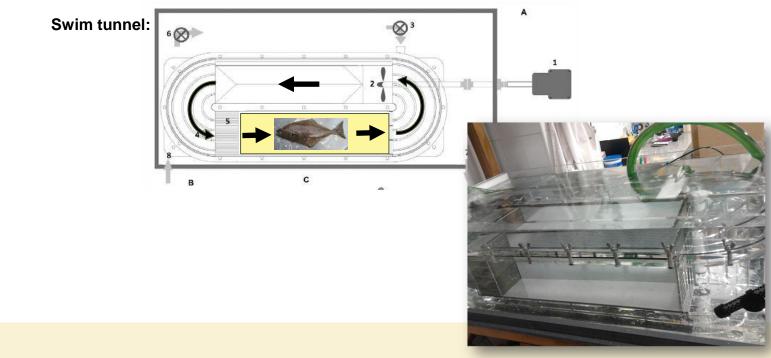
- Collect fin clips for genetic analyses on migration patterns and individual origin determination.
- Otolith microchemical and stable isotope analyses and tissue stable isotope analyses.
- Reproductive monitoring of PAT-tagged adult females: blood endocrine reproductive parameters, ovarian tissue biopsies and ultrasound for ovarian staging.

2. Larval migration and connectivity

Objective: Understand the mechanisms of larval connectivity between the GOA and the BS.

- Collect data from the NMFS icthyoplankton survey and map larval distribution over time and space.
- Collect larval samples from the survey to conduct genetic analyses.

Collaboration with Janet Duffy-Anderson (NOAA, AFSC)


Migration: proposed studies

3. Swimming and migratory performance

Objective: Evaluate swimming and migratory performance of juvenile Pacific halibut by swim testing.

Measure of fitness

- Swimming capacity (optimal or maximal sustainable swimming speed; U_{opt} , U_{max}).
- Aerobic scope (respirometry/O₂ consumption): measure of aerobic performance.
- Biochemical, cellular and molecular indicators of swimming performance in skeletal and cardiac muscle
- Drag effects of PATs.

Genetics and genomics: proposed studies

- Improve our knowledge on the genetic composition of the population
- Establish genomic resources for the species

1. Population genetic studies

Objective: Genetic characterization of Pacific halibut throughout its distribution range

- Characterization of population structure by RAD sequencing and SNP analysis.
- Identification of genetic signatures of geographical population groups

2. Sequencing of the Pacific halibut genome

Objective: Genome sequencing at sufficient coverage

- Identify genomic regions and genes responsible for temporal and spatial adaptive characteristics.
- Genome-wide association studies to try to understand the genetic basis of growth, reproductive performance, migratory behaviour and performance, etc.
- Provide genomic resolution to genetic markers (from RAD tag seq or RNAseq).
- Link genotype and phenotype.
- Indentify genetic, evolutionary changes in response to environmental and anthropogenic influences.
- Eco-evolutionary dynamics. Spatio-temporal population genomics.

3. Characterization of the Pacific halibut epigenome

Objective: Identify epigenetic effects of environmental and anthropogenic factors on the genome

- Identification of genomic regions potentially subjected to epigenetic regulation, allowing for rapid phenotypic changes and adaptive responses to environmental and anthropogenic influcences.

- Complement transcriptomic information on growth and reproductive performance.
- Identification of genetic signatures of geographical population groups

Temporal chart of activities

2016	2017 2018		2019	2020	2021					
	Annual repro	ductive cycle								
	Sex determinatio	n mechanisms								
Рори	Ilation genetic stru	cture								
	Genome s	equencing								
		Genom	e-wide association	studies						
	Epige	enome characteriz	ation							
Growth tra	nscriptome									
Gr	owth-related patter	ns								
	Regulation of growth by environmental factors									
	Tagging sublegal halibut									
	Reproductive monitoring of PAT-tagged adults									

Thank you for your attention!