INTERNATIONAL PACIFIC

Biological and Ecosystem Science Research Plan: Update

Agenda Item 8 IPHC-2019-SRB015-08

Outline

- Five-year research program and management implications
- Progress on ongoing research projects
- Externally-funded collaborative research

Five-year research program and management implications

5-Year Biological and Ecosystem Science Research Plan

Integration of biological research, stock assessment, and policy

Integration of biological research, stock assessment, and policy

	····, •··· p •·	Subsidiary Bodies IPHC Secretariat Biological & Ecological Research MSE Basic/App Understan	ent Commissioners Policy Decisions		
Biological	research	Stock assessment	Stock assessment MSE		
Research areas	Research outcomes	Relevance for stock assessment	Inputs to stock assessment and MSE development		
Migration	Larval distribution	Geographical selectivity	Information for structural choices Recruitment indices		
	Juvenile and adult migratory behavior and distribution	Stock distribution	Migration pathways and rates Timing of migration		
B I <i>I</i>	Sex ratio	Spawning biomass scale and trend	Sex ratio		
Reproduction	Spawning output	Stock productivity Recruitment variability	Maturity schedule Fecundity		
Crowth	Identification of growth patterns Environmental effects on growth	Temporal and spatial variation in growth Yield calculations	Predicted weight-at-age		
Growin	Growth influence in size-at-age variation	Effects of ecosystem conditions Effects of fishing	Mechanisms for changes in weight-at-age		
	Bycatch survival estimates	Scale and trend in mortality	Bycatch and discard mortality estimates		
Discard Survival	Discard mortality rate estimates	Scale and trend in productivity	Variability in bycatch and uncertainty in discard mortality estimates		
Genetics and Genomics	Genetic structure of the population	Spatial dynamics	Information for structural choices		
Genetics and Genomics	Sequencing of the Pacific halibut genome	Management units			

Integration of biological research, stock assessment, and policy

Integration of biological research, stock assessment, and policy: timelines

Research	n Area	2018		2019			2020		2021			2022		
Larva distribut		Data analysis		Data synthesis	SA MSE	Sample Collection		Data analysis	Da synt	ata thesis				
Migration	Adult and	Tagging		Tagging	Da	ita	SA	Tagging		Data	SA	Tagging		Data
	migration		Data analysis		synthesis MS		MSE	Data analysis	synthesis		MSE	Data analy	sis	synthesis

SRB request for new position: Life History Modeler

Progress on ongoing research projects

1. Migration and distribution

Projects:

- 1. Larval and early juvenile dispersal
- 2. Late juvenile migration
- 3. Tail pattern recognition
- 2. Reproduction
- 3. Growth
- 4. Discard Mortality
- 5. Genetics and genomics

1. Larval and early juvenile dispersal

- Contribution of spawning grounds to settlement grounds
- Connectivity of ocean basins
- Environmental effects on larval distribution
- Collaboration with NOAA/EcoFOCI
- Dispersal of young fish post-settlement

70°A

1. Larval and early juvenile dispersal: connectivity between GOA and BS

Although there are inter-annual dispersal differences, there are no obvious differences between warm and cold regimes

2. Late juvenile dispersal: wire tagging of U32 fish

Since 2015:

- 10,770 U32 fish wire tagged in FISS and NMFS Trawl Survey
- 110 recoveries

3. Tail pattern recognition

<u>Objective</u>: Use natural markings to identify individuals over time and inform on movement patterns and growth

- Blind side of tail is preferable for imaging
- Spots and patterns appear to be unique
- Markings could be used to identify individuals with image recognition software
- Future could integrate into vessel/shoreside electronic monitoring (EM) or recreational fisher applications
- To date, 882 U32 Pacific halibut photographed and wire tagged as part of this project
- To date, 7 tags recovered with tail pictures

1. Migration: timeline and integration with stock assessment, and MSE

Larval distribution and connectivity

Projects:

1. Identification of sex in the commercial landings

2. Full characterization of the annual reproductive cycle to improve current estimates of maturity

1. Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

2. Full characterization of the annual reproductive cycle

Objective: Revise maturity estimates for male and female Pacific halibut

Annual reproductive cycle Gonadal growth Maturation Spawning

- Histological assessment of gonadal development
- Reproductive hormones in the blood
- Activation of the endocrine reproductive axis (pituitary and gonads)
- Energy levels (fat content/hepatosomatic index)
- Revised scoring criteria of maturity stages by macroscopic observations in the field

Deliverables:

- Accurate staging of reproductive status
- Updated maturity-at-age estimates
- Estimates of skipped-spawning

2. Full characterization of the annual reproductive cycle

Objective: Revise maturity estimates for male and female Pacific halibut

Macroscopic maturity staging

Female macroscopic maturity stage

Microscopic maturity staging: Oocyte stage classification by histology

Oocyte stages:

- Late Perinucleolus (IPN)
- 3. Cortical alveolus (CA)
- Early vitellogenic (Vt1)
 - Mid vitellogenic (Vt2)
- 6. Late vitellogenic (Vt3)

- 1. Early perinucleolus (ePN) 7. Germinal vesicle migration (GVM)
 - 8. Germinal vesicle breakdown (GVBD)
 - 9. Hydration

Microscopic maturity staging: based on histological oocyte stages

Microscopic maturity staging: Oocyte stage classification by histology

Oocyte stages:

- Late Perinucleolus (IPN)
- Cortical alveolus (CA)
- Early vitellogenic (Vt1)
 - Mid vitellogenic (Vt2)
- 6. Late vitellogenic (Vt3)

- 1. Early perinucleolus (ePN) 7. Germinal vesicle migration (GVM)
 - 8. Germinal vesicle breakdown (GVBD)
 - 9. Hydration

Maturity classification:

- 1. Immature (e.g. Oocyte stages 1-5)
- Mature (e.g. Oocyte stages 6-9) 2.

INTERNATIONAL PACIFIC HALIBUT COMMISSION

Macroscopic maturity staging

1-µn

IPHC

Female maturity information available from one region: Portlock

• Full annual collection (2018)

Macroscopic maturity staging (♀)

• Interannual collection June 2017, 2018, 2019

Spatial analysis of maturity

• August collection in FISS

INTERNATIONAL PACIFIC HALIBUT COMMISSION

2. Reproduction: timeline and integration with stock assessment, and MSE

Projects:

- 1. Identification and validation of physiological markers for growth
- 2. Evaluation of growth patterns in the Pacific halibut population and possible effects of environmental variability

1. Identification and validation of physiological markers for growth

2. Validation of physiological growth markers for adult Pacific halibut

- 44 adult Pacific halibut in captivity in Seward, AK (collaboration with Alaska Pacific University)
- Establishment of different growth rates through dietary manipulation
- Validation of physiological growth markers to infer growth patterns (slow versus fast growth) in adult Pacific halibut

3. Evaluation of growth patterns in the Pacific halibut population

Age-matched skeletal muscle samples collected in the NMFS trawl survey (2016 – 2018) from 3 size categories:

40-60 cm FL

60-80 cm FL

<40 cm FL

Slow growth rate?

Fast growth rate?

Regional monitoring of growth patterns

3. Growth: timeline and integration with stock assessment, and MSE

4. Discard mortality rates and survival assessment

Projects:

1. Improve DMR estimations in the directed longline fishery

NOAAFISHERIES Saltonstall – Kennedy Grant NA17NMF4270240

2. Estimate DMRs in the guided recreational fishery

NFWF National Fish and Wildlife Foundation

- 1. <u>Directed longline fishery</u>: A. Relationship between handling practices and injury levels and physiological condition of released Pacific halibut
 - Assessed *injuries* associated with release techniques (careful shake, gangion cut, hook stripping).

- Physiological condition of released fish
 - Condition factor indices
- Capture conditions

•Water temperature loggers

- Glucose
- Lactate
 - Cortisol

INTERNATIONAL PACIFIC HALIBUT COMMISSION

- 1. <u>Directed longline fishery</u>: A. Relationship between <u>handling practices</u> and <u>injury levels</u> and <u>physiological condition</u> of released Pacific halibut
 - Physiological condition of released Fish: Blood stress indicators by release condition

1. <u>Directed longline fishery</u>: A. Relationship between handling practices and injury levels and physiological condition of released Pacific halibut

Physiological condition of released Fish: Blood stress indicators by injury code

IPHC

2. Guided recreational fishery: Estimation of DMRs

Project initiated in 2019

Objectives:

2019	1. Collect information on hook types and sizes
	and handling practices

2. Investigate the relationship between gear types and capture conditions and size composition of captured fish

2020

- 3. Injury profiles and physiological stress levels of captured fish
- 4. Assessment of mortality of discarded fish

Sport charter

Captured Pacific halibut

Hook injury assessment Tag

Tagging with sPATs

4. DMRs: timeline and integration with stock assessment, and MSE

5. Genetics and Genomics

Projects:

- 1. Genetic structure of the Pacific halibut population and distribution
- 2. Genome sequencing

- Genomic DNA sequenced from one Pacific h
- Conducted first genome assembly:
 - Full genome sequenced. Genome size: 700 Mb

New research position: Genetics

Mr. Andy Jasonowicz 1 yr- contract 8/26/2019-8/25/2020

- Non-continuous genome sequence.
- Additional sequencing is being conducted to complete assembly.

* Sampling Sites

Future projects:

- Genetic variability among juvenile Pacific halibut in the Bering Sea and Gulf of Alaska
- Identification of potential genetic signatures of origin (spawning groups)
- Genetic structure of the Pacific halibut population

• Genetic variability among juvenile Pacific halibut in the Bering Sea and Gulf of Alaska

<u>Aim</u>: Evaluate potential genetic variability among BS and GOA juvenile Pacific halibut that could be indicative of potential contribution from different sources (spawning groups) and ocean basin differences

• Genetic structure of the Pacific halibut population: Part 1 – East vs West Aleutian Is.

Subtle genetic differences in fish from the Western Aleutian Islands (Reg. Area 4B)

Caviat: Summer samples compared to winter (spawning) samples

• Genetic structure of the Pacific halibut population: Part 1 – East vs West Aleutian Is.

• Genetic structure of the Pacific halibut population: Part 2 – Identification of potential genetic signatures of origin (baseline signals): new spawning groups)

<u>Aim</u>: Establish genetic baselines from known spawning groups to assist in assignment studies and in studies revisiting the genetic population structure coastwide

Aim: Revised population structure

Genetic analyses using: New samples (2018, 2020) Old samples (early 2000s)

5. Genetics and genomics: timeline and integration with stock assessment, and MSE

Outline

- Five-year research plan and management implications
- Progress on ongoing research projects
- Externally-funded collaborative research

Externally-funded collaborative research

Project #	Grant agency	Project name	PI	Partners	IPHC Budget (\$US)	Management implications	Grant period
1	Saltonstall-Kennedy NOAA	Improving discard mortality rate estimates in the Pacific halibut by integrating handling practices, physiological condition and post- release survival (<i>Award No. NA17NMF4270240</i>)	IPHC	Alaska Pacific University	\$286,121	Discard estimates	September 2017 – August 2019
2	North Pacific Research Board	Somatic growth processes in the Pacific halibut (<i>Hippoglossus stenolepis</i>) and their response to temperature, density and stress manipulation effects (<i>NPRB Award No. 1704</i>)	IPHC	AFSC-NOAA-Newport, OR	\$131,891	Changes in biomass/size- at-age	September 2017 – February 2020
3	Bycatch Reduction Engineering Program - NOAA	Adapting towed array hydrophones to support information sharing networks to reduce interactions between sperm whales and longline gear in Alaska	ALFA	IPHC, University of Alaska Southeast, AFSC-NOAA	-	Whale Depredation	September 2018 – August 2019
4	Bycatch Reduction Engineering Program - NOAA	Use of LEDs to reduce Pacific halibut catches before trawl entrainment	PSMFC	IPHC, NMFS	\$1,750	Bycatch reduction	September 2018 – August 2019
5	National Fish and Wildlife Foundation	Discard mortality rate characterization in the Pacific halibut recreational fishery (<i>NFWF Award No. 61484)</i>	IPHC	UA Fairbanks, APU, Grey Light Fisheries, Alaska Charter Association	\$98,901	Discard estimates	2019-2020
		\$518,663					

Other collaborative research

Project #	Partners	Topic of collaboration
1	Agencies from contracting parties (NOAA-Fisheries, DFO, PHMA, PSMFC, ADEC)	Collaborative research and data collection in IPHC FISS
2	Industry	 Collaborative research with trawl fishery and with Pacific halibut directed (longline) and recreational fisheries on discard mortality rate. Collaborative research with Pacific halibut directed fishery on (1) sex marking at sea and (2) incidence of chalky halibut.
3	North Pacific Fisheries Management Council	Joint research priority list NPFMC-IPHC (last updated in 2018)
4	 Scientific partners Contracting parties: US (AFSC-NOAA Fisheries, NWFSC-NOAA Fisheries, University of Washington, University of Alaska Fairbanks, Alaska Pacific University) Contracting parties: Canada (Simon Fraser University, Dalhousie University) International: France (INRA) 	Scientific collaborative research on various topics (genomics, genetics, migration, ecosystem studies, etc)

INTERNATIONAL PACIFIC

INTERNATIONAL PACIFIC HALIBUT COMMISSION

