

Outline

- Five-year research program and management implications
- Progress on ongoing research projects
- Externally-funded collaborative research

Five-year research program and management implications

Primary Research Areas

Migration

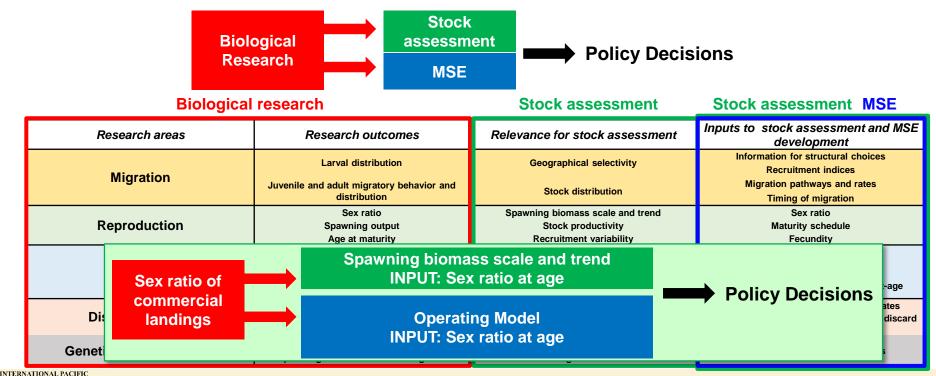
Reproduction

Growth

DMRs and discard survival

Genetics and genomics

Integration of biological research, stock assessment, and policy

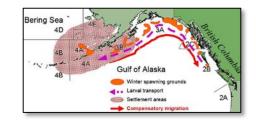


Integration of biological research, stock assessment, and policy

Integration of biological research, stock assessment, and policy

Integration of biological research, stock assessment, and policy: timelines

Research Area		2018		2019			2020			2021			2022		
Larval distributio		Data a	ınalysis	Data synthesis	SA MSE		nple ection	Data analy	sis	ata hesis					
Migration	Adult and juvenile migration	Tagging		Tagging	Da	ıta	SA	Tagging		Da	ıta	SA	Tagging		Data
		Data ana			synthesis		MSE	SE Data analysis		synthesis		MSE	Data analysis		synthesis

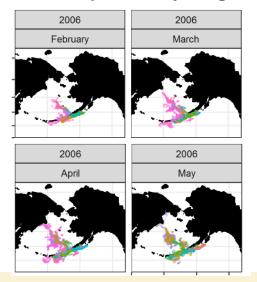

OHAC THE OHAC

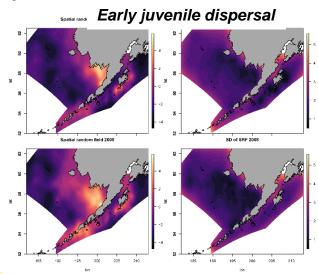
Progress on ongoing research projects

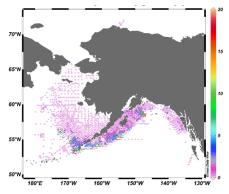
1. Migration and distribution

Projects:

- 1. Larval and early juvenile dispersal
- 2. Late juvenile migration
- 3. Tail pattern recognition


- 2. Reproduction
- 3. Growth
- 4. Discard Mortality
- 5. Genetics and genomics

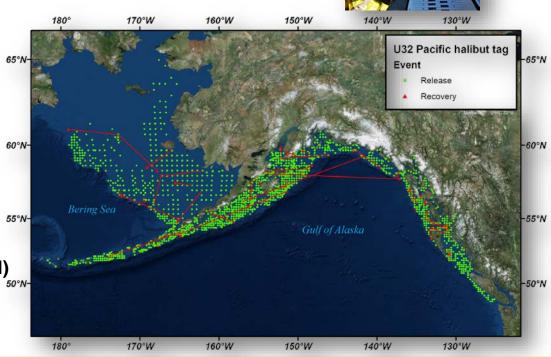



Migration and Distribution

1. Larval and early juvenile dispersal

- Contribution of spawning grounds to settlement grounds
- Connectivity of ocean basins
- Environmental effects on larval distribution
- Collaboration with NOAA/EcoFOCI
- Dispersal of young fish post-settlement

Migration and Distribution


2. Late juvenile dispersal: wire tagging of U32 fish

Since 2015:

- 8,600 U32 fish wire tagged in FISS and NMFS Trawl Survey
- 74 recoveries

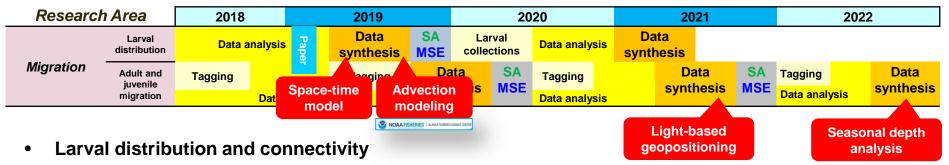
In 2018:

- FISS (1,747 tags)
- NMFS (916 tags; BS/AI)

Migration and Distribution

3. Tail pattern recognition

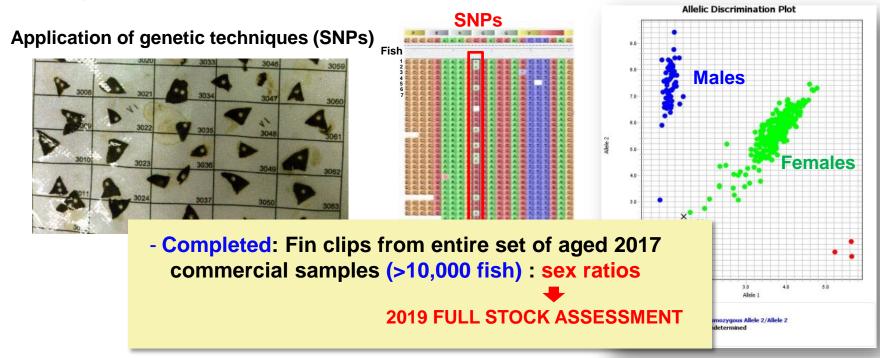
Objective: Use natural markings to identify individuals over time and inform on movement patterns and growth



- Blind side of tail is preferable for imaging
- Spots and patterns appear to be unique
- Markings could be used to identify individuals with image recognition software
- Future could integrate into vessel/shoreside electronic monitoring (EM) or recreational fisher applications
- In 2018, 827 U32 Pacific halibut photographed and wire tagged as part of this project

Migration and distribution: timeline and integration with stock assessment, and MSE

- Electronic archival tagging:
 - Analyze age- and sex-specific movement patterns
 - Generate "dispersal kernels" for use in spatially-explicit models (assessment, metapopulation) that incorporate migration
 - Analyze onshore-offshore and spawning movements to refine definitions of effective spawning biomass



Projects:

- 1. Identification of sex in the commercial landings
- 2. Full characterization of the annual reproductive cycle

1. Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

2. Full characterization of the annual reproductive cycle

Objective: Revise maturity estimates for male and female Pacific halibut

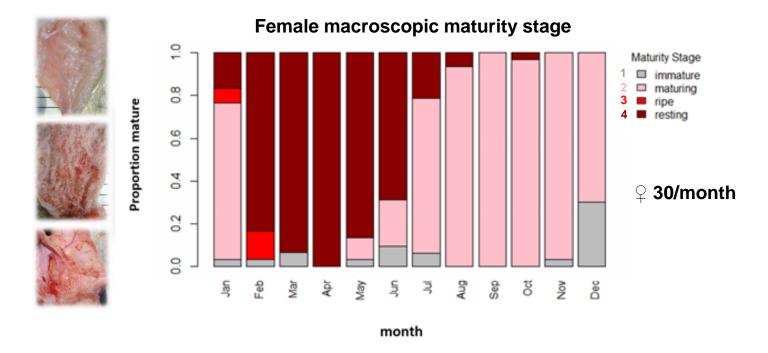
Annual reproductive cycle

Gonadal growth

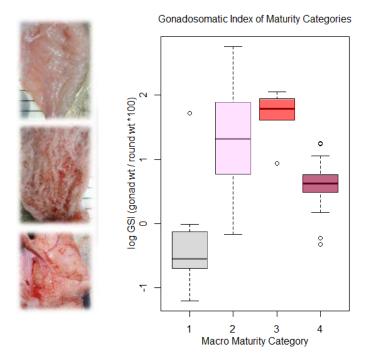
Maturation

Spawning

- Histological assessment of gonadal development
- Reproductive hormones in the blood
- Activation of the endocrine reproductive axis (pituitary and gonads)
- Energy levels (fat content/hepatosomatic index)
- Revised scoring criteria of maturity stages by macroscopic observations in the field

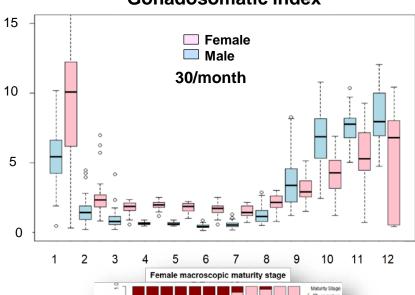

Deliverables:

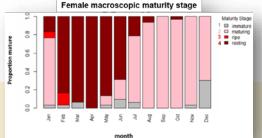
- Accurate staging of reproductive status
- Updated maturity-at-age estimates
- Estimates of skipped-spawning



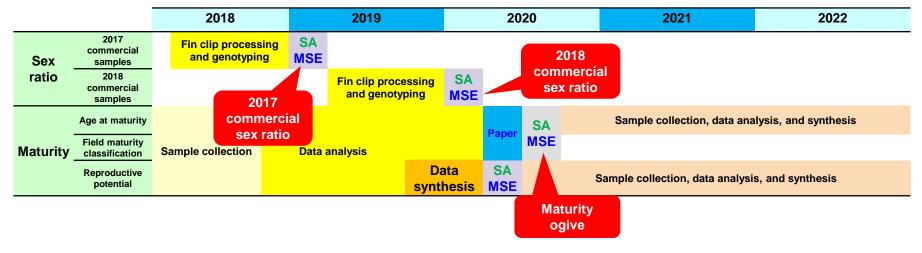
2. Full characterization of the annual reproductive cycle

2. Full characterization of the annual reproductive cycle

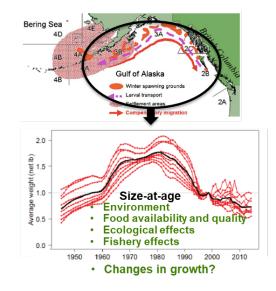




2. Full characterization of the annual reproductive cycle

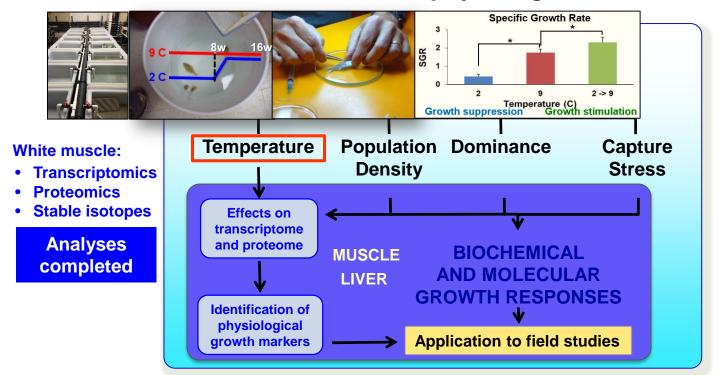


INTERNATIONAL PACIFIC


Reproduction: timeline and integration with stock assessment, and MSE

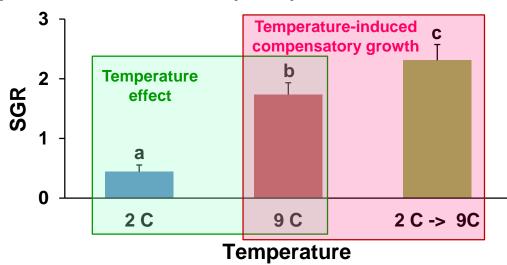
Growth

Projects:

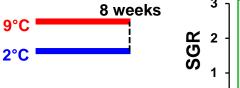

- 1. Identification and validation of physiological markers for growth
- 2. Evaluation of growth patterns in the Pacific halibut population and possible effects of environmental variability

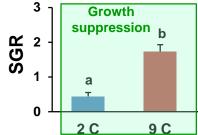
Growth

1. Identification and validation of physiological markers for growth



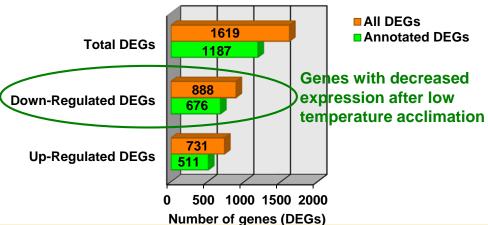
Specific Growth Rate (SGR)

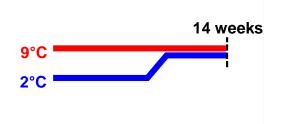

RNA sequencing of white skeletal muscle

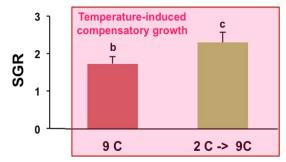

Differential gene expression

- Molecular signatures of temperatureregulated growth
- Molecular signatures of rapid growth

MOLECULAR GROWTH
MARKERS

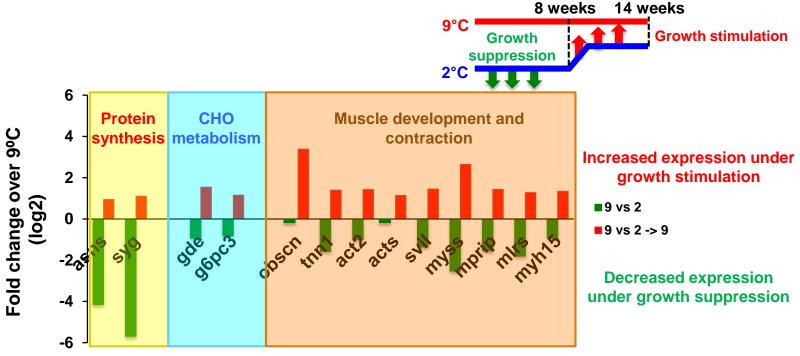



Differentially expressed genes (DEGs):


• Functional categories (Down-regulated at 2°C):


Change	Functional category
Down	Muscle development and contraction
Down	Transcription and translation
Down	Protein and carbohydrate metabolism
Down	Energy metabolism and transfer
Down	Cell division
Down	Stress response
Down	Immune response

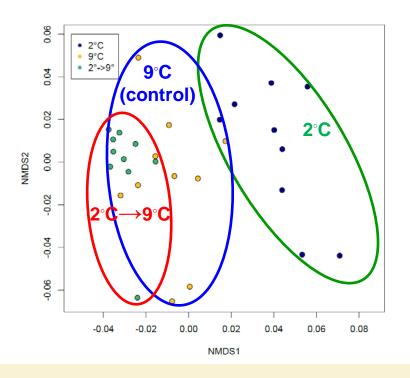
• Differentially expressed genes (DEGs):



Number of genes (DEGs)

 Functional categories 	(Up-regulated from	2°C to 9°C)
---	--------------------	-------------

Change	Functional category
Up	Muscle development and contraction
Up	Protein metabolism and modification
Up	Carbohydrate metabolism (for ATP)
Up	Iron transport and binding
Up	Hemoglobin synthesis
Up	Cell adhesion and proliferation
Up	Transcription and translation


Potential molecular markers for growth alterations in skeletal muscle

qPCR assays for growth marker gene expression in development

Growth: proteomic analyses

Data Dependent Acquisition (DDA): LC-MS/MS

- 3140 annotated proteins
- Differentially expressed proteins:

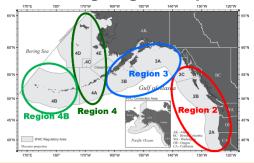
 - ✓ Growth stimulation: ↑149, ↓93

Comparison between genes and proteins regulated by growth in progress

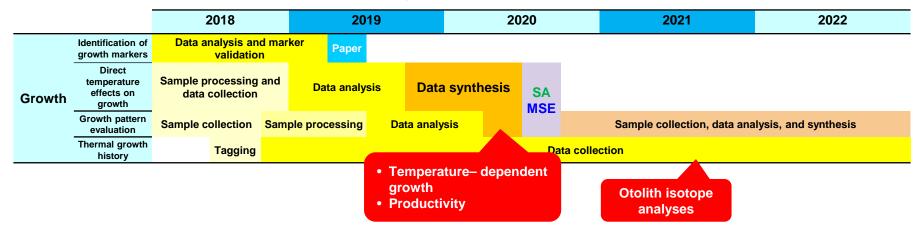
Selection of physiological growth markers

Growth

2. Evaluation of growth patterns in the Pacific halibut population


Age-matched skeletal muscle samples collected in the NMFS trawl survey (2016 – 2018) from 3 size categories:

Slow growth rate?


Fast growth rate?

Regional monitoring of growth patterns

Growth: timeline and integration with stock assessment, and MSE

Discard mortality rates and survival assessment

Projects:

1. Improve DMR estimations in the directed longline fishery

NOAA FISHERIES Saltonstall – Kennedy Grant NA17NMF4270240

2. Estimate DMRs in the guided recreational fishery

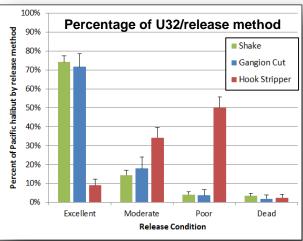
1. <u>Directed longline fishery</u>: A. Relationship between <u>handling practices</u> and <u>injury levels</u> and <u>physiological condition</u> of released Pacific halibut

- Assessed *injuries* associated with release techniques (careful shake, gangion cut,

hook stripping).

Physiological condition of released fish

Condition factor indices

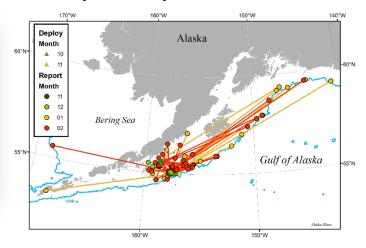

Capture conditions

Blood stress indicators:

✓ Glucose

Lactate

Cortisol



- B. Relationship between physiological condition post-capture and survival post-release as assessed by tagging
 - Wire tags (n=1,048): including all handling practices and release conditions
 - Accelerometer tags (n=79): only fish in excellent condition

After 96 days at liberty:

Results: 4% mortality

C. Applicability of electronic monitoring (EM) in DMR estimation

- Deployed EM system on a longline vessel
- Video recorded fish handling events during capture
- This will allow us to determine injury profile by release method

C. Applicability of EM in DMR estimation

Results: Comparison of EM-determined release method to the actual

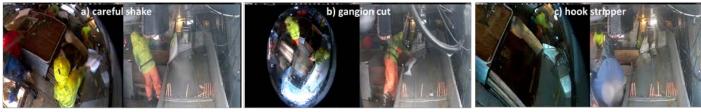
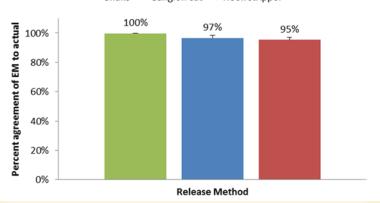



Figure 4. EM capture of hook release methods: a) careful shake, b) gangion cut, and c) hook stripper.

Shake Gangion cut
Hook stripper

2. Guided recreational fishery: Estimation of DMRs

Project initiated in 2019

Objectives:

- 1. Collect information on hook types and sizes and handling practices
- Investigate the relationship between gear types and capture conditions and size composition of captured fish
- 3. Injury profiles and physiological stress levels of captured fish
- 4. Assessment of mortality of discarded fish

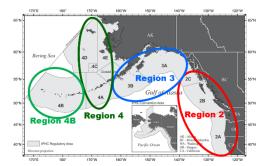
Sport charter

Captured Pacific halibut

Hook injury assessment

Tagging with sPATs


DMRs: timeline and integration with stock assessment, and MSE

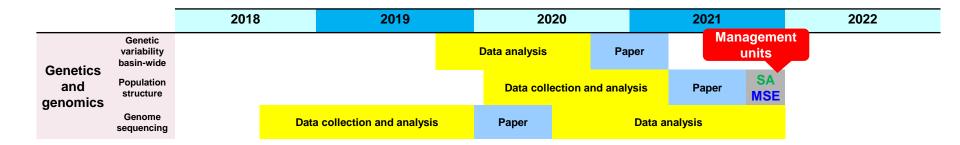


Genetics and Genomics

Projects:

- 1. Genetic structure of the Pacific halibut population
- 2. Genome sequencing

- Genomic DNA sequenced from one Pacific halibut female (WZ).
- Conducted first genome assembly:
 - Full genome sequenced. Genome size: 700 Mb
 - Non-continuous genome sequence.



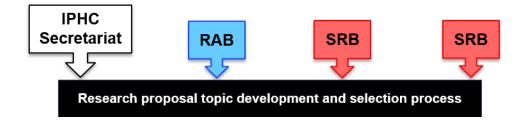
Genetics and genomics: timeline and integration with stock assessment, and MSE

Outline

- Five-year research plan and management implications
- Progress on ongoing research projects
- Externally-funded collaborative research

Externally-funded collaborative research

Project #	Grant agency	Project name	PI	Partners	IPHC Budget (\$US)	Management implications	Grant period
1	Saltonstall-Kennedy NOAA	Improving discard mortality rate estimates in the Pacific halibut by integrating handling practices, physiological condition and post-release survival (Award No. NA17NMF4270240)	IPHC	Alaska Pacific University	\$286,121	Discard estimates	September 2017 – August 2019
2	North Pacific Research Board	Somatic growth processes in the Pacific halibut (<i>Hippoglossus stenolepis</i>) and their response to temperature, density and stress manipulation effects (<i>NPRB Award No. 1704</i>)	IPHC	AFSC-NOAA-Newport, OR	\$131,891	Changes in biomass/size-at-age	September 2017 – February 2020
3	Bycatch Reduction Engineering Program - NOAA	Adapting towed array hydrophones to support information sharing networks to reduce interactions between sperm whales and longline gear in Alaska	ALFA	IPHC, University of Alaska Southeast, AFSC-NOAA	-	Whale Depredation	September 2018 – August 2019
4	Bycatch Reduction Engineering Program - NOAA	Use of LEDs to reduce Pacific halibut catches before trawl entrainment	PSMFC	IPHC, NMFS	\$1,750	Bycatch reduction	September 2018 – August 2019
5	National Fish and Wildlife Foundation	Discard mortality rate characterization in the Pacific halibut recreational fishery (NFWF Award No. 61484)	IPHC	UA Fairbanks, APU, Grey Light Fisheries, Alaska Charter Association	\$98,901	Discard estimates	2019-2020
			Total awarded (\$)	\$518,663			


Other collaborative research

Project #	Partners	Topic of collaboration						
1	Agencies from contracting parties (NOAA-Fisheries, DFO, PHMA, PSMFC, ADEC)	Collaborative research and data collection in IPHC FISS						
2	Industry	 Collaborative research with trawl fishery and with Pacific halibut directed (longline) and recreational fisheries on discard mortality rate. Collaborative research with Pacific halibut directed fishery on (1) sex marking at sea and (2) incidence of chalky halibut. 						
3	North Pacific Fisheries Management Council	Joint research priority list NPFMC-IPHC (last updated in 2018)						
4	Scientific partners 1. Contracting parties: US (AFSC-NOAA Fisheries, NWFSC-NOAA Fisheries, University of Washington, University of Alaska Fairbanks, Alaska Pacific University) 2. Contracting parties: Canada (Simon Fraser University, Dalhousie University) 3. International: France (INRA)	Scientific collaborative research on various topics (genomics, genetics, migration, ecosystem studies, etc)						

INTERNATIONAL PACIFIC

Scientific advice inputs into IPHC's research development and selection process

