

IPHC 5-year Biological and Ecosystem Science Research Program

IPHC-2019-RAB20-05
a 200800

Description of IPHC research activities

1. Overview of IPHC 5-year Biological and Ecosystem Sciences Research Plan (2017-2021)
2. Core research streams: Updates for key ongoing research activities (Project leaders)

- Migration: Migratory behaviour and distribution of Pacific halibut (L. Sadorus, T. Loher)
- Reproduction:
- Reproductive assessment of the Pacific halibut population (J. Planas)
- Sex-marking at sea and application of genetics to determine the sex ratio of the commercial landings validation of sex identification (T. Loher)
- Growth: Factors affecting somatic growth in juvenile Pacific halibut (J. Planas)
- Discard mortality rates: Discard mortality rates and post-release survival in the Pacific halibut fisheries (C. Dykstra)

3. IPHC new research projects selected for 2019 (J. Planas)

Primary research activities at IPHC

Primary objectives

- Identify and address critical knowledge gaps in the biology of Pacific halibut
- Understand the influence of environmental conditions on Pacific halibut biology
- Apply resulting knowledge to reduce uncertainty in current stock assessment models

Five-year research plan and management implications

Primary
Research Areas
Migration
Reproduction
Growth
DMRs and discard
survival
Genetics and
genomics

Integration of biological research, stock assessment, and policy

Stock assessment MSE

Research areas	Research outcomes
Migration	Larval distribution Juvenile and adult migratory behavior and distribution
Reproduction	Sex ratio Spawning output Age at maturity
Growth	Identification of growth patterns Environmental effects on growth Growth influence in size-at-age variation
Discard Survival	Bycatch survival estimates Discard mortality rate estimates
Genetics and Genomics	Genetic structure of the population Sequencing of the Pacific halibut genome

Relevance for stock assessment	Inputs tostock assessment and MSE development Geographical selectivity Stock distribution		
Information for structural choices Recruitment indices Migration pathways and rates Timing of migration			
Spawning biomass scale and trend Stock productivity Recruitment variability	Sex ratio Maturity schedule Fecundity		
Temporal and spatial variation in growth Yield calculations	Predicted weight-at-age		
Effects of ecosystem conditions			
Effects of fishing		\quad	Mechanisms for changes in weight-at-age
:---:			

Integration of biological research, stock assessment, and policy

Integration of biological research, stock assessment, and policy

Research areas	Research outcomes
Migration	Larval distribution Juvenile and adult migratory behavior and distribution
Reproduction	Sex ratio Spawning output Age at maturity

Relevance for stock assessment	Inputs to stock assessment and MSE development
Geographical selectivity	Information forstructural choices Recruitment indices Migration pathways and rates Timing of migration
Stock distribution	Sex ratio Maturity schedule Fecundity
Spawning biomass scale and trend Stock productivity Recruitment variability	Policy Decisions

Integration of biological research, stock assessment, and policy: timelines

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Research Area} \& \multicolumn{3}{|l|}{2018 2019} \& \multicolumn{2}{|c|}{2020} \& \multicolumn{2}{|l|}{2021} \& \multicolumn{2}{|c|}{2022} \\
\hline \& Larval distribution \& Data analysis \& Data synthesis \& \begin{tabular}{cc}
SA \& Sa \\
MSE
\end{tabular} \& mple ction \& Data analysis \& Data synthesis \& \& \& \\
\hline Migration \& Adult and juvenile migration \& Tagging

Data analysis \& Tagging \& Data synthesis \& \begin{tabular}{l}
SA

MSE

 \&

Tagging

Data analysis

 \& Data synthesis \&

SA

MSE

 \&

Tagging

Data analysis
\end{tabular} \& Data synthesis

\hline
\end{tabular}

Description of IPHC research activities

1. Overview of IPHC 5-year Biological and Ecosystem Sciences Research Plan (2017-2021)
2. Core research streams: Updates for key ongoing research activities (Project leaders)

- Migration: Migratory behaviour and distribution of Pacific halibut (L. Sadorus, T. Loher)
- Reproduction:
- Reproductive assessment of the Pacific halibut population (J. Planas)
- Sex-marking at sea and application of genetics to determine the sex ratio of the commercial landings validation of sex identification (T. Loher)
- Growth: Factors affecting somatic growth in juvenile Pacific halibut (J. Planas)
- Discard mortality rates: Discard mortality rates and post-release survival in the Pacific halibut fisheries (C. Dykstra)

3. IPHC new research projects selected for 2019 (J. Planas)

Current research activities

1. Migration: context

Current research activities

1. Migration: context

Historical IPHC studies

- Wire tagging: 1925-present - stock distribution, recruitment, migration, bycatch rates and survival
- Electronic tagging (satellite and archival): 2002-present Movement between basins, connectivity of summer feeding and winter spawning grounds
- PIT tagging: 2003-2009 - mortality and migration rates
- Observational surveys: 1930s GOA larval dispersal

Current research activities

1. Migration: context

Historical IPHC studies

- Wire tagging: 1925-present - stock distribution, recruitment, migration, bycatch rates and survival
- Electronic tagging (satellite and archival): 2002-present - Movement between basins, connectivity of summer feeding and winter spawning grounds
- PIT tagging: 2003-2009 - mortality and migration rates

- Observational surveys: 1930s - GOA larval dispersal

Current research activities

1. Migration: context

Historical IPHC studies

- Wire tagging: 1925-present - stock distribution, recruitment, migration, bycatch rates and survival
- Electronic tagging (satellite and archival): 2002-present - Movement between basins, connectivity of summer feeding and winter spawning grounds
- PIT tagging: 2003-2009 - mortality and migration rates
- Observational surveys: 1930s - GOA larval dispersal

Current research activities

1. Migration: context

Historical IPHC studies

- Wire tagging: 1925-present - stock distribution, recruitment, migration, bycatch rates and survival
- Electronic tagging (satellite and archival): 2002-present - Movement between basins, connectivity of summer feeding and winter spawning grounds
- PIT tagging: 2003-2009 - mortality and migration rates
- Larval dispersal 1930s (IPHC), 1980spresent (NOAA)

Current research activities

1. Migration: context

Historical IPHC studies

- Wire tagging: 1925-present - stock distribution, recruitment, migration, bycatch rates and survival
- Electronic tagging (satellite and archival): 2002-present - Movement between basins, connectivity of summer feeding and winter spawning grounds
- PIT tagging: 2003-2009 - mortality and migration rates
- Observational surveys: 1930s - GOA larval dispersal

Current research activities

1. Migration: context

Historical IPHC studies

- Wire tagging: 1925-present - stock distribution, recruitment, migration, bycatch rates and survival
- Electronic tagging (satellite and archival): 2002-present - Movement between basins, connectivity of summer feeding and winter spawning grounds
- PIT tagging: 2003-2009 - mortality and migration rates
- Observational surveys: 1930s - GOA larval dispersal

Current research activities

1. Migration: important gaps in knowledge

Current research activities

1. Migration: Early life history

- Contribution of spawning grounds to settlement grounds
- Connectivity of ocean basins
- Environmental factors influencing distribution
- Dispersal of young fish post-settlement
- Collaboration with NOAA/EcoFOCI

Current research activities

1. Migration: Early life history

- Larval dispersal

Current research activities

1. Migration: Early life history

- Juvenile dispersal

Current research activities

1. Migration: Late juvenile dispersal

Current research activities

1. Migration: Late juvenile dispersal

Current research activities

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years

Current research activities

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
A) Relate rearing conditions to growth and regional productivity

Current research activities

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
A) Relate rearing conditions to growth and regional productivity

Temperature time-series from tags

Current research activities

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
A) Relate rearing conditions to growth and regional productivity

Temperature time-series from tags

Temperature history from otolith microchemistry

Current research activities

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
A) Relate rearing conditions to growth and regional productivity

Current research activities

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
A) Relate rearing conditions to growth and regional productivity

... in a context of climate change

Base scenario

Current research activities

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
A) Relate rearing conditions to growth and regional productivity
B) Index rates (speed) of migration from rearing areas to adult feeding grounds

Current research activities

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
A) Relate rearing conditions to growth and regional productivity
B) Index rates (speed) of migration from rearing areas to adult feeding grounds

Current research activities

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
A) Relate rearing conditions to growth and regional productivity
B) Index rates (speed) of migration from rearing areas to adult feeding grounds

Current research activities

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
A) Relate rearing conditions to growth and regional productivity
B) Index rates (speed) of migration from rearing areas to adult feeding grounds

Current research activities

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
A) Relate rearing conditions to growth and regional productivity
B) Index rates (speed) of migration from rearing areas to adult feeding grounds

Current research activities

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
A) Relate rearing conditions to growth and regional productivity
B) Index rates (speed) of migration from rearing areas to adult feeding grounds

Providing input for spatiallyexplicit population models that incorporate migration

Current research activities

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
A) Relate rearing conditions to growth and regional productivity
B) Index rates (speed) of migration from rearing areas to adult feeding grounds
C) Refine estimates of age-of-entry into the spawning population

Current research activities

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
A) Relate rearing conditions to growth and regional productivity
B) Index rates (speed) of migration from rearing areas to adult feeding grounds
C) Refine estimates of age-of-entry into the spawning population

The "typical" depth-specific spawning migration...

Current research activities

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
A) Relate rearing conditions to growth and regional productivity
B) Index rates (speed) of migration from rearing areas to adult feeding grounds
C) Refine estimates of age-of-entry into the spawning population

The "typical" depth-specific spawning migration...

Current research activities

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
A) Relate rearing conditions to growth and regional productivity
B) Index rates (speed) of migration from rearing areas to adult feeding grounds
C) Refine estimates of age-of-entry into the spawning population

The "typical" depth-specific spawning migration...
... varies among individuals

Current research activities

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
A) Relate rearing conditions to growth and regional productivity
B) Index rates (speed) of migration from rearing areas to adult feeding grounds
C) Refine estimates of age-of-entry into the spawning population

The "typical" depth-specific spawning migration...

))

Current research activities

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
A) Relate rearing conditions to growth and regional productivity
B) Index rates (speed) of migration from rearing areas to adult feeding grounds
C) Refine estimates of age-of-entry into the spawning population

The "typical" depth-specific spawning migration...
... varies among individuals

Providing input for refined estimates of spawning stock biomass
0)

Current research activities

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years

- 268 fish tagged coastwide in 2018
- 13 were PAT tags released in 4B
- Rewards offered for tag and otolith recovery

Current research activities

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years

- 268 fish tagged coastwide in 2018
- 13 were PAT tags released in 4B
- Rewards offered for tag and otolith recovery
- 2019 deployments will focus on the Eastern Bering Sea shelf

Current research activities

2. Reproduction

Projects:

1. Identification of sex in the commercial landings
2. Full characterization of the annual reproductive cycle

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis
Changes in size-at-age in combination with a constant size limit are expected to result in varying degrees of female-biased catch

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

Female-biased mortality will cause the sex ratio of each cohort to decline as it ages

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

We need to know the harvested sex ratios

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

Meta-parameters	
year	2010
area	2B
L50.b0	50.28713
L50.b1	2.776162
k.c0	0.034339
k.c1	0.020033
k.c2	-0.00047
L50.plus	112.9268
k.plus	0.274327
plus.age	25

> In 2004, Bill Clark developed a statistical methods for estimating harvested sex ratios

Proportion female at age/length
$\begin{array}{lllllllllllllllllllllllll}\text { L50 } & 64.16794 & 66.9441 & 69.72026 & 72.49642 & 75.27258 & 78.04875 & 80.82491 & 83.60107 & 86.37723 & 89.15339 & 91.92956 & 94.70572 & 97.48188 & 100.258 \\ \mathrm{k} & 0.122854 & 0.137761 & 0.151736 & 0.164779 & 0.17689 & 0.188069 & 0.198316 & 0.207631 & 0.216014 & 0.223465 & 0.229984 & 0.235571 & 0.240226 & 0.243949\end{array}$

	. 12285	, 13776	. 15173	0.164779	0.17689	. 18806	1983	,	,					促
	5	6	7	8	9	10	11	12	13	14	15	16	17	18
82	0.899	0.888	0.866	0.827	0.767	0.678	0.558	0.418	0.280	0.168	0.092	0.048	0.024	0.011
83	0.910	0.901	0.882	0.850	0.797	0.717	0.606	0.469	0.325	0.202	0.114	0.060	0.030	0.015
84	0.920	0.913	0.897	0.869	0.824	0.754	0.652	0.521	0.374	0.240	0.139	0.074	0.038	0.019
85	0.928	0.923	0.910	0.887	0.848	0.787	0.696	0.572	0.426	0.283	0.169	0.092	0.047	0.024
86	0.936	0.932	0.922	0.902	0.870	0.817	0.736	0.622	0.480	0.331	0.204	0.114	0.060	0.030
87	0.943	0.941	0.932	0.916	0.888	0.843	0.773	0.669	0.534	0.382	0.243	0.140	0.075	0.038
88	0.949	0.948	0.941	0.928	0.905	0.867	0.806	0.714	0.587	0.436	0.288	0.171	0.093	0.048
89	0.955	0.954	0.949	0.938	0.919	0.887	0.835	0.754	0.638	0.491	0.338	0.207	0.115	0.060
90	0.960	0.960	0.956	0.947	0.931	0.904	0.861	0.791	0.686	0.547	0.391	0.248	0.142	0.076
91	0.964	0.965	0.962	0.955	0.942	0.920	0.883	0.823	0.731	0.602	0.447	0.295	0.174	0.095
92	0.968	0.969	0.967	0.961	0.951	0.932	0.902	0.851	0.771	0.654	0.504	0.346	0.211	0.118
93	0.972	0.973	0.972	0.967	0.958	0.943	0.918	0.876	0.807	0.703	0.561	0.401	0.254	0.145
94	0.975	0.977	0.975	0.972	0.965	0.953	0.932	0.897	0.838	0.747	0.617	0.459	0.302	0.178
95	0.978	0.979	0.979	0.976	0.970	0.960	0.943	0.914	0.866	0.787	0.670	0.517	0.355	0.217
96	0.980	0.982	0.982	0.980	0.975	0.967	0.953	0.929	0.889	0.822	0.718	0.576	0.412	0.261
97	0.983	0.984	0.984	0.983	0.979	0.972	0.961	0.942	0.908	0.852	0.762	0.632	0.471	0.311
98	0.985	0.986	0.986	0.985	0.982	0.977	0.968	0.952	0.925	0.878	0.802	0.685	0.531	0.366
99	0.986	0.988	0.988	0.987	0.985	0.981	0.974	0.961	0.939	0.900	0.836	0.733	0.590	0.424
100	0.988	0.990	0.990	0.989	0.988	0.984	0.978	0.968	0.950	0.919	0.865	0.777	0.647	0.484

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

In 2004, Bill Clark developed a statistical
 methods for estimating harvested sex ratios

Caveat - his method used setline survey data, our only good source of data regarding sex-size-age

He warned that his method was "... only ... true for the summer survey period" and that "sex composition of the \{commercial\} catch could be different if male catchability is not the same as the survey"
(e.g., if ratios-at-age vary by season or region, or are bait-specific)

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

In 2010, we placed our summer intern (Monica Woods) on commercial vessels to monitor sex ratios

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

In 2010, we placed our summer intern (Monica Woods) on commercial vessels to monitor sex ratios

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

In 2010, we placed our summer intern (Monica Woods) on commercial vessels to monitor sex ratios

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

We need direct observations of the harvested sex ratios

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis
Starting in 2014, we began a two-part program to obtain those data

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis
Starting in 2014, we began a two-part program to obtain those data
A) Development of genetic techniques

-Homozyous allece $1 /$ /hllele 1 .Homorgoous allele $2 /$ Allele 2

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis
Starting in 2014, we began a two-part program to obtain those data
A) Development of genetic techniques
B) At-sea commercial sex marking

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis
A) Development of genetic techniques

- Pacific halibut females are "heterogametic" = ZW (same form as "XY" males in humans)
- Two genetic markers were identified that occur primarily in females

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis
A) Development of genetic techniques

- Pacific halibut females are "heterogametic" = ZW (same form as "XY" males in humans)
- Two genetic markers were identified that occur primarily in females
- Using tissue samples (fin clips), a lab procedure was developed that attaches fluorescent "labels" to the DNA at those markers ... and subsequently fall back off

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis
A) Development of genetic techniques

- Pacific halibut females are "heterogametic" = ZW (same form as "XY" males in humans)
- Two genetic markers were identified that occur primarily in females
- Using tissue samples (fin clips), a lab procedure was developed that attaches fluorescent "labels" to the DNA at those markers ... and subsequently fall back off
- So, female samples "glow" while males do not

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis
A) Development of genetic techniques
B) At-sea sex-marking

We intended to use this method to validate observations that were collected in the field

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis
A) Development of genetic techniques
B) At-sea sex-marking

- Develop a set of knife-cuts that crew could use to mark females and males

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis
A) Development of genetic techniques
B) At-sea sex-marking

- Develop a set of knife-cuts that crew could use to mark females and males
- Test the technique via voluntary fleet participation

Please mark 100% of your catch!
Your effort is greatly appreciated!

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis
A) Development of genetic techniques
B) At-sea sex-marking

- Develop a set of knife-cuts that crew could use to mark females and males
- Test the technique via voluntary fleet participation

2016
Reg Area Offloads Samples \% marked
2A
$\begin{array}{llll}2 B & 130 & 1,905 & \mathbf{1 3 . 1}\end{array}$
2C
3A
3B
4A
4B
4 C
4D

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis
A) Development of genetic techniques
B) At-sea sex-marking

- Develop a set of knife-cuts that crew could use to mark females and males
- Test the technique via voluntary fleet participation

2016								
Reg Area	Offloads	Samples	\% marked		Samples	Accuracy		
2A	-	-	-	Vessel 1	47	1.00		
2B	130	1,905	13.1	Vessel 2	13	1.00		
2C	-	-	-	Vessel 3	9	1.00		
3A	-	-	-	Vessel 4	8	1.00		
3B	-	-	-	Vessel 5	3 17	1.00		
4A	-	-	-	Vessel 7	12	0.75		
4B	-	-	-	Vessel 8	90	0.74	Some issue	$r a c y$
4B	-	-	-	Vessel 9	33	0.73	that need to	
4C	-	-	-	Vessel 10	40	0.48		
4D	-	-	-	20th Session of the Research Advisory Board (RAB20)				Slide

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis
A) Development of genetic techniques
B) At-sea sex-marking

- Develop a set of knife-cuts that crew could use to mark females and males
- Test the technique via voluntary fleet participation

	2016			2017			Coastwise	
Reg Area	Offloads	Samples	\% marked	Offloads	Samples	\% marked		
2A	-	-	-	36	70	6.2		
2B	130	1,905	13.1	5	84	5.3		
2C	-	-	-	16	116	9		
3A	-	-	-	10	113	7.6		
3B	-	-	-	9	292	20.3		
4A	-	-	-	2	77	7.4		
4B	-	-	-	2	95	10.7		
4C	-	-	-	3	63	9.1		
4D	-	-	-	1	19	3.7 h	h Advisory Board (RAB20)	Slide 66

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis
A) Development of genetic techniques
B) At-sea sex-marking

- Develop a set of knife-cuts that crew could use to mark females and males
- Test the technique via voluntary fleet participation

	2016							
Reg Area	Offloads	Samples \% marked	Offloads	Samples \% marked	Coastwise			
2A	-	-	-	36	70	6.2		
2B	130	1,905	13.1	5	84	5.3	Large decline in participation	
2C	-	-	-	16	116	9		
3A	-	-	-	10	113	7.6		
3B	-	-	-	9	292	20.3		
4A	-	-	-	2	77	7.4		Slide 67
4B	-	-	-	2	95	10.7		
4C	-	-	-	3	63	9.1		
4D	-	-	-	1	19	3.7	Advisory Board (RAB20)	

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis
A) Development of genetic techniques
B) At-sea sex-marking

- Develop a set of knife-cuts that crew could use to mark females and males
- Test the technique via voluntary fleet participation

	2016			2017			Coastwise	
Reg Area	Offloads	Samples	\% marked	Offloads	Samples	\% marked		
2A	-	-	-	36	70	6.2		
2B	130	1,905	13.1	5	84	5.3	Large decline in participation:	
2 C	-	-	-	16	116	9	ineffective incentive program	
3A	-	-	-	10	113	7.6		
3B	-	-	-	9	292	20.3	Some issues with accuracy	
4A	-	-	-	2	77	7.4	that need to be corrected	
4B	-	-	-	2	95	10.7		
4 C	-	-	-	3	63	9.1		
4D	-	-	-	1	19	3.7	ch Advisory Board (RAB20)	Slide 68

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis
A) Development of genetic techniques
B) At-sea sex-marking
C) Routine collection of fin clips (matched to each otolith) in ports since 2017

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis
A) Use of genetic techniques
B) At-sea sex-marking
C) Routine collection of fin clips (matched to each otolith) in ports since 2017

Current research activities

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis
A) Use of genetic techniques
B) At-sea sex-marking
C) Routine collection of fin clips (matched to each otolith) in ports since 2017

- Completed: Fin clips from entire set of aged 2017 commercial samples (>10,000 fish) : sex ratios

2019 FULL STOCK ASSESSMENT

Legend
-Homozyous allele $1 /$ allele 1 Homozygous allele 2 /allele 2

Current research activities

2. Reproduction: Full characterization of the annual reproductive cycle

Objective: Revise maturity estimates for male and female Pacific halibut

Annual reproductive cycle

- Gonadal growth

Maturation
Spawning

- Histological assessment of gonadal development
- Reproductive hormones in the blood
- Activation of the endocrine reproductive axis (pituitary and gonads)
- Energy levels (fat content/hepatosomatic index)
- Revised scoring criteria of maturity stages by macroscopic observations in the field

Deliverables:

- Accurate staging of reproductive status
- Updated maturity-at-age estimates
- Estimates of skipped-spawning

Current Research Activities

3. Growth

Projects:

1. Identification and validation of physiological markers for growth
2. Evaluation of growth patterns in the Pacific halibut population and possible effects of environmental variability

Growth

1. Identification and validation of physiological markers for growth

IPHC / AFSC-NOAA (Newport, OR)
Dr. Josep Planas (PI)
Dr. Thomas Hurst

NPRB Grant 1704 (2017-2019)

Growth

2. Evaluation of growth patterns in the Pacific halibut population

Age-matched skeletal muscle samples collected in the NMFS trawl survey (2016-2018) from 3 size categories:

Characterization of physiological growth markers in muscle samples from age-matched individuals

- Effects of environmental variability: influence of thermal history on growth patterns
- U32 tagged fish with archival tags that record temperature
- Relate temperature history to otolith chemistry (O_{2} isotopes); and then to growth

Tag
Temperature time-series
Otolith as temperature-recorder

DMRs and Survival Assessment

1. Directed longline fishery:
A. Relationship between handling practices and injury levels and physiological condition of released Pacific halibut

- Assessed injuries associated with release techniques (careful shake, gangion cut, hook stripping).

- Physiological condition of released fish
- Condition factor indices
- Fat content
- Blood stress

- Capture conditions

DMRs and Survival Assessment

B. Relationship between physiological condition post-capture and survival post-release as assessed by tagging

- Accelerometer tags ($\mathrm{n}=79$): only fish in excellent condition
- Wire tags ($n=1,048$): including all handling practices and release conditions

Results: 4\% mortality

DMRs and Survival Assessment

C. Applicability of electronic monitoring (EM) in DMR estimation

- Deployed EM system on a longline vessel
- Video recorded fish handling events during capture
- This will allow us to determine injury profile by release method

DMRs and Survival Assessment

C. Applicability of EM in DMR estimation

- Results: Comparison of EM-determined release method to the actual

- Shake Gangion cut Hook stripper

DMRs and Survival Assessment

2. Guided recreational fishery: Estimation of DMRs

- To be initiated in 2019

Objectives:

1. Collect information on hook types and sizes and handling practices
2. Investigate the relationship between gear types and capture conditions and size composition of captured fish

Recreational charter

Tagging with sPATs

Description of IPHC research activities

```
1. Overview of IPHC 5-year Biological and Ecosystem Sciences Research Plan
    (2017-2021)
2. Core research streams: Updates for key ongoing research activities (Project
leaders)
- Miaration: Migratory behaviour and distribution of Pacific halibut (L. Sadorus,
    T. Loher)
Reproduction:
            Reproductive assessment of the Pacific halibut population (J. Planas)
    - Sex-marking at sea and application of genetics to determine the sex ratio
            of the commercial landings validation of sex identification (T. Loher)
Growth: Factors affecting somatic growth in juvenile Pacific halibut (J. Planas)
Discard mortality rates: Discard mortality rates and post-release survival in
the Pacific halibut fisheries (C. Dykstra)
```

3. IPHC new research projects selected for 2019 (J. Planas)

Research topic development and selection process

New research projects selected for 2019

Up-to-date genetic analysis of population structure

Dispersal and recruitment
2 success of juvenile Pacific halibut

Investigations on chalky Pacific halibut

Project description

Collection of genetic samples from spawning fish in Reg. Area 4B and revisit genetic analyses

Application of genetics and otolith chemical analyses to understand juvenile distribution and recruitment success

Collection of information from stakeholders on the incidence of chalky flesh and understanding possible causes leading to its development

Use of acoustic towed array hydrophones for whale detection. Participation in project led by ALFA and funded by BREP-NOAA

Management implications

Adult distribution, regional management

Juvenile distribution and recruitment

Landed value

Whale depredation

Use of LEDs in trawl gear to facilitate escape responses of Pacific halibut. Participation in project Bycatch reduction led by PSMFC and funded by BREP-NOAA

5 Bycatch reduction techniques

New biological laboratory at IPHC

- Lab technician: Anna Simeon (full time; 2 yr appointment; salary co-financed by NPRB grant)
- Lab equipment:
- PCR machine
- Spectrophotometer
- Microplate reader
- Current lab capabilities:
- Nucleic acid extraction and quantification
- Genotyping

Sex ratios/ genetics/ migration

- Gene expression \longrightarrow Growth/reproduction
- Blood metabolite and hormone] Discard determinations survival/
- Staff and student training

