INTERNATIONAL PACIFIC

IPHC 5-year Biological and Ecosystem Science Research Program

IPHC-2019-RAB20-05

Griffa

Description of IPHC research activities

- 1. Overview of IPHC 5-year Biological and Ecosystem Sciences Research Plan (2017-2021)
- 2. Core research streams: Updates for key ongoing research activities (Project leaders)
 - **Migration***: Migratory behaviour and distribution of Pacific halibut* (L. Sadorus, T. Loher)
 - Reproduction:
 - Reproductive assessment of the Pacific halibut population (J. Planas)
 - Sex-marking at sea and application of genetics to determine the sex ratio of the commercial landings validation of sex identification (T. Loher)
 - Growth: Factors affecting somatic growth in juvenile Pacific halibut (J. Planas)
 - **Discard mortality rates:** Discard mortality rates and post-release survival in the Pacific halibut fisheries (C. Dykstra)
- 3. IPHC new research projects selected for 2019 (J. Planas)

Primary research activities at IPHC

Primary objectives

- Identify and address critical knowledge gaps in the biology of Pacific halibut
- Understand the influence of environmental conditions on Pacific halibut biology
- Apply resulting knowledge to reduce *uncertainty* in current stock assessment models

Five-year research plan and management implications

Integration of biological research, stock assessment, and policy

Biolo Reso	ogical earch MSE	ent Policy Decis	ions			
Biological	research	Stock assessment Stock assessment MS				
Research areas	Research outcomes	Relevance for stock assessment	Inputs to stock assessment and MSE development			
Migration	Larval distribution Juvenile and adult migratory behavior and distribution	Geographical selectivity Stock distribution	Information for structural choices Recruitment indices Migration pathways and rates Timing of migration			
Reproduction	Sex ratio Spawning output Age at maturity	Spawning biomass scale and trend Stock productivity Recruitment variability	Sex ratio Maturity schedule Fecundity			
Growth	Identification of growth patterns Environmental effects on growth Growth influence in size-at-age variation	Temporal and spatial variation in growth Yield calculations Effects of ecosystem conditions Effects of fishing	Predicted weight-at-age Mechanisms for changes in weight-at-age			
Discard Survival	Bycatch survival estimates Discard mortality rate estimates	Scale and trend in mortality Scale and trend in productivity	Bycatch and discard mortality estimates Variability in bycatch and uncertainty in discard mortality estimates			
Genetics and Genomics	Genetic structure of the population Sequencing of the Pacific halibut genome	Spatial dynamics Management units	Information for structural choices			

INTERNATIONAL PACIFIC

Integration of biological research, stock assessment, and policy

INTERNATIONAL PACIFIC

Integration of biological research, stock assessment, and policy

Biole Res	ogical earch MSE	Policy Decis	sions				
Biological	research	Stock assessment	essment Stock assessment MSE				
Research areas	Research outcomes	Relevance for stock assessment	Inputs to stock assessment and MSE development				
Migration	Larval distribution Juvenile and adult migratory behavior and distribution	Geographical selectivity Stock distribution	Information for structural choices Recruitment indices Migration pathways and rates Timing of migration				
Reproduction	Sex ratio Spawning output Age at maturity	Spawning biomass scale and trend Stock productivity Recruitment variability	Sex ratio Maturity schedule Fecundity				
Sex ratio of	Spawning bioma INPUT: Sex	ess scale and trend k ratio at age	Policy Decisions				
Di: Genet	Operati INPUT: Sex	ng Model k ratio at age	ates discard				

INTERNATIONAL PACIFIC

Integration of biological research, stock assessment, and policy: timelines

Research	Area	2018	2019 2020			2021			2022					
Larval distribution Migration Adult and juvenile migration	Larval distribution	Data analysis		Data synthesis	SA MSE	San colle	Sample Data analysis		Da synt	ata hesis				
	Adult and	Tagging		Tagging	Da	ata SA	Tagging		Data		SA	Tagging Data		Data
	Data analysis			synthesis MSE		MSE	Data analysis	synthesi		nesis	MSE Data analy		/sis	synthesis

Description of IPHC research activities

- 1. Overview of IPHC 5-year Biological and Ecosystem Sciences Research Plan (2017-2021)
- 2. Core research streams: Updates for key ongoing research activities (Project leaders)
 - **Migration***: Migratory behaviour and distribution of Pacific halibut* (L. Sadorus, T. Loher)
 - Reproduction:
 - Reproductive assessment of the Pacific halibut population (J. Planas)
 - Sex-marking at sea and application of genetics to determine the sex ratio of the commercial landings validation of sex identification (T. Loher)
 - Growth: Factors affecting somatic growth in juvenile Pacific halibut (J. Planas)
 - **Discard mortality rates:** Discard mortality rates and post-release survival in the Pacific halibut fisheries (C. Dykstra)
- 3. IPHC new research projects selected for 2019 (J. Planas)

Slide 10

1. Migration: context

Historical IPHC studies

- Wire tagging: 1925-present stock distribution, recruitment, migration, bycatch rates and survival
- Electronic tagging (satellite and archival): 2002-present – Movement between basins, connectivity of summer feeding and winter spawning grounds
- PIT tagging: 2003-2009 mortality and migration rates
- Observational surveys: 1930s GOA larval dispersal

INTERNATIONAL PACIFIC

1. Migration: context

Historical IPHC studies

- Wire tagging: 1925-present stock distribution, recruitment, migration, bycatch rates and survival
- Electronic tagging (satellite and archival): 2002-present – Movement between basins, connectivity of summer feeding and winter spawning grounds
- PIT tagging: 2003-2009 mortality and migration rates
- Observational surveys: 1930s GOA larval dispersal

INTERNATIONAL PACIFIC

20th Session of the Research Advisory Board (RAB20)

1. Migration: context

Historical IPHC studies

- Wire tagging: 1925-present stock distribution, recruitment, migration, bycatch rates and survival
- Electronic tagging (satellite and archival): 2002-present – Movement between basins, connectivity of summer feeding and winter spawning grounds
- PIT tagging: 2003-2009 mortality and migration rates
- Observational surveys: 1930s GOA larval dispersal

INTERNATIONAL PACIFIC

1. Migration: context

Historical IPHC studies

- Wire tagging: 1925-present stock distribution, recruitment, migration, bycatch rates and survival
- Electronic tagging (satellite and archival): 2002-present – Movement between basins, connectivity of summer feeding and winter spawning grounds
- PIT tagging: 2003-2009 mortality and migration rates
- Larval dispersal 1930s (IPHC), 1980spresent (NOAA)

INTERNATIONAL PACIFIC

1. Migration: context

Historical IPHC studies

- Wire tagging: 1925-present stock distribution, recruitment, migration, bycatch rates and survival
- Electronic tagging (satellite and archival): 2002-present – Movement between basins, connectivity of summer feeding and winter spawning grounds
- PIT tagging: 2003-2009 mortality and migration rates
- Observational surveys: 1930s GOA larval dispersal

INTERNATIONAL PACIFIC

1. Migration: context

Historical IPHC studies

- Wire tagging: 1925-present stock distribution, recruitment, migration, bycatch rates and survival
- Electronic tagging (satellite and archival): 2002-present – Movement between basins, connectivity of summer feeding and winter spawning grounds
- PIT tagging: 2003-2009 mortality and migration rates
- Observational surveys: 1930s GOA larval dispersal

INTERNATIONAL PACIFIC

1. Migration: important gaps in knowledge

INTERNATIONAL PACIFIC

1. Migration: Early life history

- Contribution of spawning grounds to settlement grounds
- Connectivity of ocean basins
- Environmental factors influencing distribution
- Dispersal of young fish post-settlement
- Collaboration with NOAA/EcoFOCI

- 1. Migration: Early life history
 - Larval dispersal

2006	2006	2006	2006
February	March	April	Мау
2010	2010	2010	2010
February	March	April	Мау

INTERNATIONAL PACIFIC

- 1. Migration: Early life history
 - Juvenile dispersal

INTERNATIONAL PACIFIC

1. Migration: Late juvenile dispersal

INTERNATIONAL PACIFIC

1. Migration: Late juvenile dispersal

INTERNATIONAL PACIFIC

20th Session of the Research Advisory Board (RAB20)

Slide 22

- 1. Migration: Late juvenile dispersal
 - Using electronic tags on U32s to record temperature, light, and depth for up to 7 years

INTERNATIONAL PACIFIC

-

20th Session of the Research Advisory Board (RAB20)

Slide 23

1. Migration: Late juvenile dispersal

Using electronic tags on U32s to record temperature, light, and depth for up to 7 years

A) Relate rearing conditions to growth and regional productivity

NTERNATIONAL PACIFIC

-

1. Migration: Late juvenile dispersal

Using electronic tags on U32s to record temperature, light, and depth for up to 7 years

A) Relate rearing conditions to growth and regional productivity

INTERNATIONAL PACIFIC

-

20th Session of the Research Advisory Board (RAB20)

Slide 25

1. Migration: Late juvenile dispersal

Using electronic tags on U32s to record temperature, light, and depth for up to 7 years

A) Relate rearing conditions to growth and regional productivity

Temperature time-series from tags

INTERNATIONAL PACIFIC

-

20th Session of the Research Advisory Board (RAB20)

Slide 26

-

INTERNATIONAL PACIFIC

HALIBUT COMMISSION

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
- A) Relate rearing conditions to growth and regional productivity

-

INTERNATIONAL PACIFIC

HALIBUT COMMISSION

1. Migration: Late juvenile dispersal

- HOTEK CONTRACTOR
- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
- A) Relate rearing conditions to growth and regional productivity

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
- A) Relate rearing conditions to growth and regional productivity
- B) Index rates (speed) of migration from rearing areas to adult feeding grounds

INTERNATIONAL PACIFIC

-

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
- A) Relate rearing conditions to growth and regional productivity
- B) Index rates (speed) of migration from rearing areas to adult feeding grounds

-

20th Session of the Research Advisory Board (RAB20)

-

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
 - A) Relate rearing conditions to growth and regional productivity
 - **B)** Index rates (speed) of migration from rearing areas to adult feeding grounds

-

INTERNATIONAL PACIFIC

HALIBUT COMMISSION

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
- A) Relate rearing conditions to growth and regional productivity
- B) Index rates (speed) of migration from rearing areas to adult feeding grounds

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
 - A) Relate rearing conditions to growth and regional productivity

B) Index rates (speed) of migration from rearing areas to adult feeding grounds

INTERNATIONAL PACIFIC

-

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
 - A) Relate rearing conditions to growth and regional productivity

B) Index rates (speed) of migration from rearing areas to adult feeding grounds

Providing input for spatiallyexplicit population models that incorporate migration

INTERNATIONAL PACIFIC

-

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
- A) Relate rearing conditions to growth and regional productivity
- B) Index rates (speed) of migration from rearing areas to adult feeding grounds
- C) Refine estimates of age-of-entry into the spawning population

INTERNATIONAL PACIFIC

-

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
 - A) Relate rearing conditions to growth and regional productivity
 - B) Index rates (speed) of migration from rearing areas to adult feeding grounds
 - C) Refine estimates of age-of-entry into the spawning population

The "typical" depth-specific spawning migration...

-
1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
 - A) Relate rearing conditions to growth and regional productivity
 - B) Index rates (speed) of migration from rearing areas to adult feeding grounds
 - C) Refine estimates of age-of-entry into the spawning population

-

-

HALIBUT COMMISSION

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
 - A) Relate rearing conditions to growth and regional productivity
 - B) Index rates (speed) of migration from rearing areas to adult feeding grounds
 - C) Refine estimates of age-of-entry into the spawning population

... varies among individuals

Feb Mar Apr May

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
 - A) Relate rearing conditions to growth and regional productivity
 - B) Index rates (speed) of migration from rearing areas to adult feeding grounds
 - C) Refine estimates of age-of-entry into the spawning population

20th Sess

The "typical" depth-specific spawning migration...

INTERNATIONAL PACIFIC

-

The "typical" depth-specific spawning migration...

-

HALIBUT COMMISSION

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years
 - A) Relate rearing conditions to growth and regional productivity
 - B) Index rates (speed) of migration from rearing areas to adult feeding grounds
 - C) Refine estimates of age-of-entry into the spawning population

... varies among individuals

Feb Mar Apr May

Providing input for refined estimates of spawning stock biomass

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years

- 268 fish tagged coastwide in 2018
 - 13 were PAT tags released in 4B
- Rewards offered for tag and otolith recovery

INTERNATIONAL PACIFIC

1. Migration: Late juvenile dispersal

- Using electronic tags on U32s to record temperature, light, and depth for up to 7 years

- 268 fish tagged coastwide in 2018
 - 13 were PAT tags released in 4B
- Rewards offered for tag and otolith recovery
- 2019 deployments will focus on the Eastern Bering Sea shelf

INTERNATIONAL PACIFIC

2. Reproduction

Projects:

1. Identification of sex in the commercial landings

2. Full characterization of the annual reproductive cycle

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

Changes in size-at-age in combination with a constant size limit are expected to result in varying degrees of female-biased catch

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

Female-biased mortality will cause the sex ratio of each cohort to decline as it ages

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

We need to know the harvested sex ratios

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

Meta-parameters	
year	2010
area	2B
L50.b0	50.28713
L50.b1	2.776162
k.c0	0.034339
k.c1	0.020033
k.c2	-0.00047
L50.plus	112.9268
k.plus	0.274327
plus.age	25

In 2004, Bill Clark developed a statistical methods for estimating harvested sex ratios

L50		64.16794	66.9441	69.72026	72.49642	75.27258	78.04875	80.82491	83.60107	86.37723	89.15339	91.92956	94.70572	97.48188	100.258
k		0.122854	0.137761	0.151736	0.164779	0.17689	0.188069	0.198316	0.207631	0.216014	0.223465	0.229984	0.235571	0.240226	0.243949
		5	6	7	8	9	10	11	12	13	14	15	16	17	18
	82	0.899	0.888	0.866	0.827	0.767	0.678	0.558	0.418	0.280	0.168	0.092	0.048	0.024	0.011
	83	0.910	0.901	0.882	0.850	0.797	0.717	0.606	0.469	0.325	0.202	0.114	0.060	0.030	0.015
	84	0.920	0.913	0.897	0.869	0.824	0.754	0.652	0.521	0.374	0.240	0.139	0.074	0.038	0.019
	85	0.928	0.923	0.910	0.887	0.848	0.787	0.696	0.572	0.426	0.283	0.169	0.092	0.047	0.024
	86	0.936	0.932	0.922	0.902	0.870	0.817	0.736	0.622	0.480	0.331	0.204	0.114	0.060	0.030
	87	0.943	0.941	0.932	0.916	0.888	0.843	0.773	0.669	0.534	0.382	0.243	0.140	0.075	0.038
	88	0.949	0.948	0.941	0.928	0.905	0.867	0.806	0.714	0.587	0.436	0.288	0.171	0.093	0.048
	89	0.955	0.954	0.949	0.938	0.919	0.887	0.835	0.754	0.638	0.491	0.338	0.207	0.115	0.060
	90	0.960	0.960	0.956	0.947	0.931	0.904	0.861	0.791	0.686	0.547	0.391	0.248	0.142	0.076
	91	0.964	0.965	0.962	0.955	0.942	0.920	0.883	0.823	0.731	0.602	0.447	0.295	0.174	0.095
	92	0.968	0.969	0.967	0.961	0.951	0.932	0.902	0.851	0.771	0.654	0.504	0.346	0.211	0.118
	93	0.972	0.973	0.972	0.967	0.958	0.943	0.918	0.876	0.807	0.703	0.561	0.401	0.254	0.145
	94	0.975	0.977	0.975	0.972	0.965	0.953	0.932	0.897	0.838	0.747	0.617	0.459	0.302	0.178
	95	0.978	0.979	0.979	0.976	0.970	0.960	0.943	0.914	0.866	0.787	0.670	0.517	0.355	0.217
	96	0.980	0.982	0.982	0.980	0.975	0.967	0.953	0.929	0.889	0.822	0.718	0.576	0.412	0.261
	97	0.983	0.984	0.984	0.983	0.979	0.972	0.961	0.942	0.908	0.852	0.762	0.632	0.471	0.311
	98	0.985	0.986	0.986	0.985	0.982	0.977	0.968	0.952	0.925	0.878	0.802	0.685	0.531	0.366
	99	0.986	0.988	0.988	0.987	0.985	0.981	0.974	0.961	0.939	0.900	0.836	0.733	0.590	0.424
-	100	0.988	0.990	0.990	0.989	0.988	0.984	0.978	0.968	0.950	0.919	0.865	0.777	0.647	0.484

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

	k.c0	
	k.c1	
	k.c2	
	k.plus	

In 2004, Bill Clark developed a statistical methods for estimating harvested sex ratios

Caveat – his method used setline survey data, our only good source of data regarding sex-size-age He warned that his method was "... only ... true for the summer survey period" and that "sex composition of the {commercial} catch could be different if male catchability is not the same as the survey" (e.g., if ratios-at-age vary by season or region, or are bait-specific)

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

In 2010, we placed our summer intern (Monica Woods) on commercial vessels to monitor sex ratios

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

In 2010, we placed our summer intern (Monica Woods) on commercial vessels to monitor sex ratios

20th Session of the Research Advisory Board (RAB20)

00

25 +

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

In 2010, we placed our summer intern (Monica Woods) on commercial vessels to monitor sex ratios

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

We need direct observations of the harvested sex ratios

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

Starting in 2014, we began a two-part program to obtain those data

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

Starting in 2014, we began a two-part program to obtain those data

A) Development of genetic techniques

20th Session of the Research Advisory Board (RAB20)

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

Starting in 2014, we began a two-part program to obtain those data

A) Development of genetic techniques

B) At-sea commercial sex marking

20th Session of the Research Advisory Board (RAB20)

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

A) Development of genetic techniques

- Pacific halibut females are "heterogametic" = ZW (same form as "XY" males in humans)
- Two genetic markers were identified that occur primarily in females

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

A) Development of genetic techniques

- Pacific halibut females are "heterogametic" = ZW (same form as "XY" males in humans)
- Two genetic markers were identified that occur primarily in females
- Using tissue samples (fin clips), a lab procedure was developed that attaches fluorescent "labels" to the DNA at those markers ... and subsequently fall back off

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

A) Development of genetic techniques

- Pacific halibut females are "heterogametic" = ZW (same form as "XY" males in humans)
- Two genetic markers were identified that occur primarily in females
- Using tissue samples (fin clips), a lab procedure was developed that attaches fluorescent "labels" to the DNA at those markers ... and subsequently fall back off
- So, female samples "glow" while males do not

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

- A) Development of genetic techniques
- B) At-sea sex-marking

We intended to use this method to validate observations that were collected in the field

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

- A) Development of genetic techniques
- B) At-sea sex-marking
- Develop a set of knife-cuts that crew could use to mark females and males

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

- A) Development of genetic techniques
- B) At-sea sex-marking
- Develop a set of knife-cuts that crew could use to mark females and males
- Test the technique via voluntary fleet participation

Sex-marking of halibut aboard commercial fishing trips

The IPHC requests year help during the 2016 fishing season, as we work to dryelop standard protocols for determining the sex of hallbut that are landed by the commercial fishery. Accurate sex-ratio information is necessary for stock assessment - most noishly, for accurately estimating and nonintering spawning tack biornass. You can help by marking the sex of the fish that you eatch, while dressing then, using the identification-cost that are described before.

First: Determine whether you have a female or a male halibut.

Female halibut have ovaries that are clongated (funnel-shaped) triangles (see below, left). These take up the rear period of the gat cavity, farthest from the head, and extend back into to body. The ovaries are smooth and suc-like, with a balty rounded from dega. Inside, the ovaries may contain developing eggs; the outer surface may have well-developed blood vessels. For fish of any given size, ovaries tend to be much larger than tests:

Mate hallbut have testes that are pale pink and relatively triangular (see below, right), with a shardy-supered front edge, and lacking withink below vesselo on the outer auriface. The tests are made up of overlapping lobes (a bit like a liver) that produce fine notches and erevices in the surface. They are also in the rear of the gat cavity, furthest from the head.

Female halibut: ovary location and shape. Ovaries have an elongated funnel-shape, and are a smooth sac with a rounded front edge.

Male halibut: testis location and shape. Testes are more triangular than ovaries, are composed of overlapping lobes, and have a sharper front edge.

over -

Then: Mark the fish as either female or male, using your gutting knife.

Female: Make two parellel cuts through the top (dorsal) fin (see below, left), being sure to make your cuts using an upward stroke, away from the animal, to avoid damaging the flesh. Two cuts must be made so that the see-marks cannot be confided with pre-existing injuries to the fin. Note that only the top (docal) fin can be marked; any marks found in the lower fin will be ignored when the fish is sampled in port.

Male: Make a single cut through the gill-plate (operculum) on the fish's white side (see below, right). Make he cut using an upward streke, making the cut parallel to the rear edge of the operculum. The cut should strend about 3/4 of the way up the plate, so that the "flap" that you create will remain attached to the plate.

Please mark 100% of your catch!

Your effort is greatly appreciated!

Research Advisory board (RAb20)

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

- A) Development of genetic techniques
- B) At-sea sex-marking
- Develop a set of knife-cuts that crew could use to mark females and males
- Test the technique via voluntary fleet participation

		2016	
Reg Area	Offloads	Samples	% marked
2A	-	-	-
2B	130	1,905	13.1
2C	-	-	-
3A	-	-	-
3B	-	-	-
4A	-	-	-
4B	-	-	-
4C	-	-	-
4D	-	-	-

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

A) Development of genetic techniques

2016

- B) At-sea sex-marking
- Develop a set of knife-cuts that crew could use to mark females and males
- Test the technique via voluntary fleet participation

		2010	
Reg Area	Offloads	Samples	% marked
2A	-	-	-
2B	130	1,905	13.1
2C	-	_	_
 3∆	_	_	_
20			
3B	-	-	-
4A	-	-	-
4B	-	-	-
4C	-	-	-
4D	-	-	-

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

- A) Development of genetic techniques
- B) At-sea sex-marking
- Develop a set of knife-cuts that crew could use to mark females and males
- Test the technique via voluntary fleet participation

		2016			2017		Construine	
Reg Area	Offloads	Samples	% marked	Offloads	Samples	% marked	Coastwise	
2A	-	-	-	36	70	6.2		
2B	130	1,905	13.1	5	84	5.3		
2C	-	-	-	16	116	9		
3A	-	-	-	10	113	7.6		
3B	-	-	-	9	292	20.3		
4A	-	-	-	2	77	7.4		
4B	-	-	-	2	95	10.7		
4C	-	-	-	3	63	9.1		
4D	-	-	-	1	19	3.7	h Advisory Board (RAB20)	

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

- A) Development of genetic techniques
- B) At-sea sex-marking
- Develop a set of knife-cuts that crew could use to mark females and males
- Test the technique via voluntary fleet participation

Reg Area Offloads Samples % marked Offloads Samples % marked	
2A 36 70 6.2	
2B 130 1,905 13.1 5 84 5.3 Large decline in participation	ation
2C 16 116 9	
3A 10 113 7.6	
3B 9 292 20.3	
4A 2 77 7.4	
4B 2 95 10.7	
4C 3 63 9.1	
4D 1 19 3.7 Advisory Board (RAB20)	

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

- A) Development of genetic techniques
- B) At-sea sex-marking
- Develop a set of knife-cuts that crew could use to mark females and males
- Test the technique via voluntary fleet participation

		2016			2017		6
Reg Area	Offloads	Samples	% marked	Offloads	Samples	% marked	0.0
2A	-	-	-	36	70	6.2	
2B	130	1,905	13.1	5	84	5.3	La
2C	-	-	-	16	116	9	in
3A	-	-	-	10	113	7.6	
3B	-	-	-	9	292	20.3	S
4A	-	-	-	2	77	7.4	th
4B	-	-	-	2	95	10.7	
4C	-	-	-	3	63	9.1	
4D	-	-	-	1	19	3.7	ch Ao

Coastwise

Large decline in participation: ineffective incentive program

Some issues with accuracy that need to be corrected

ch Advisory Board (RAB20)

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

- A) Development of genetic techniques
- B) At-sea sex-marking
- C) Routine collection of fin clips (matched to each otolith) in ports since 2017

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

- A) Use of genetic techniques
- B) At-sea sex-marking
- C) Routine collection of fin clips (matched to each otolith) in ports since 2017

2. Reproduction: Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

- A) Use of genetic techniques
- B) At-sea sex-marking
- C) Routine collection of fin clips (matched to each otolith) in ports since 2017
 - Completed: Fin clips from entire set of aged 2017 commercial samples (>10,000 fish) : sex ratios

20th Session of the Research Advisory Board (RAB20)

2. Reproduction: Full characterization of the annual reproductive cycle

Objective: Revise maturity estimates for male and female Pacific halibut

Deliverables:

- Accurate staging of reproductive status
- Updated maturity-at-age estimates
- Estimates of skipped-spawning

Sept Oct Nov Dec Jan FebMar Apr May Jun Jul Aug

2017	2018
	30 ♀ / 30 ♂

Current Research Activities

3. Growth

Projects:

- 1. Identification and validation of physiological markers for growth
- 2. Evaluation of growth patterns in the Pacific halibut population and possible effects of environmental variability

INTERNATIONAL PACIFIC

Growth

1. Identification and validation of physiological markers for growth

Growth

INTERNATIONAL PACIFIC

HALIBUT COMMISSION

2. Evaluation of growth patterns in the Pacific halibut population

Age-matched skeletal muscle samples collected in the NMFS trawl survey (2016 – 2018) from 3 size categories:

Characterization of physiological growth markers in muscle samples from age-matched individuals

- Effects of environmental variability: influence of thermal history on growth patterns

- U32 tagged fish with archival tags that record temperature
- Relate temperature history to otolith chemistry (O₂ isotopes); and then to growth

1. Directed longline fishery: Saltonstall – Kennedy Grant NA17NMF4270240

Assessed *injuries* associated with release techniques (careful shake, gangion cut, hook stripping).

- Physiological condition of released fish

- Condition factor indices
- Fat content
- Blood stress

Capture conditions

20th Session of the Research Advisory Board (RAB20)

Slide 76

INTERNATIONAL PACIFIC

- B. Relationship between physiological condition post-capture and survival post-release as assessed by tagging
 - Accelerometer tags (n=79): only fish in excellent condition
 - Wire tags (n=1,048): including all handling practices and release conditions

HALIBUT COMMISSION

C. Applicability of electronic monitoring (EM) in DMR estimation

- Deployed EM system on a longline vessel
- Video recorded fish handling events during capture
- This will allow us to determine injury profile by release method

C. Applicability of EM in DMR estimation

<u>Results</u>: Comparison of EM-determined release method to the actual

Shake Gangion cut Hook stripper

INTERNATIONAL PACIFIC

2. Guided recreational fishery: Estimation of DMRs

- To be initiated in 2019

Objectives:

- 1. Collect information on hook types and sizes and handling practices
- 2. Investigate the relationship between gear types and capture conditions and size composition of captured fish
- 3. Injury profiles and physiological stress levels of captured fish
- 4. Assessment of mortality of discarded fish

Recreational charter

Captured Pacific halibut

Hook injury assessment

Tagging with sPATs

20th Session of the Research Advisory Board (RAB20)

Slide 80

Description of IPHC research activities

- 1. Overview of IPHC 5-year Biological and Ecosystem Sciences Research Plan (2017-2021)
- 2. Core research streams: Updates for key ongoing research activities (Project leaders)
 - **Migration***: Migratory behaviour and distribution of Pacific halibut* (L. Sadorus, T. Loher)
 - Reproduction:
 - Reproductive assessment of the Pacific halibut population (J. Planas)
 - Sex-marking at sea and application of genetics to determine the sex ratio of the commercial landings validation of sex identification (T. Loher)
 - Growth: Factors affecting somatic growth in juvenile Pacific halibut (J. Planas)
 - **Discard mortality rates:** Discard mortality rates and post-release survival in the Pacific halibut fisheries (C. Dykstra)

3. IPHC new research projects selected for 2019 (J. Planas)

Research topic development and selection process

20th Session of the Research Advisory Board (RAB20)

Slide 82

New research projects selected for 2019

	Project name	Project description	Management implications
1	Up-to-date genetic analysis of population structure	Collection of genetic samples from spawning fish in Reg. Area 4B and revisit genetic analyses	Adult distribution, regional management
2	Dispersal and recruitment success of juvenile Pacific halibut	Application of genetics and otolith chemical analyses to understand juvenile distribution and recruitment success	Juvenile distribution and recruitment
3	Investigations on chalky Pacific halibut	Collection of information from stakeholders on the incidence of chalky flesh and understanding possible causes leading to its development	Landed value
4	Whale detection techniques	Use of acoustic towed array hydrophones for whale detection. Participation in project led by ALFA and funded by BREP-NOAA	Whale depredation
5	Bycatch reduction techniques	Use of LEDs in trawl gear to facilitate escape responses of Pacific halibut. Participation in project led by PSMFC and funded by BREP-NOAA	Bycatch reduction
PACIFIC			

INTERNATIONAL

New biological laboratory at IPHC

- Lab technician: Anna Simeon (full time; 2 yr appointment; salary co-financed by NPRB grant)
- Lab equipment:
 - PCR machine
 - Spectrophotometer
 - Microplate reader

Current lab capabilities:

- Nucleic acid extraction and quantification
 Genotyping
 Gene expression → Growth/reproduction
 Blood metabolite and hormone Discard determinations
- Staff and student training

survival/

20th Session of the Research Advisory Board (RAB20)

INTERNATIONAL PACIFIC

