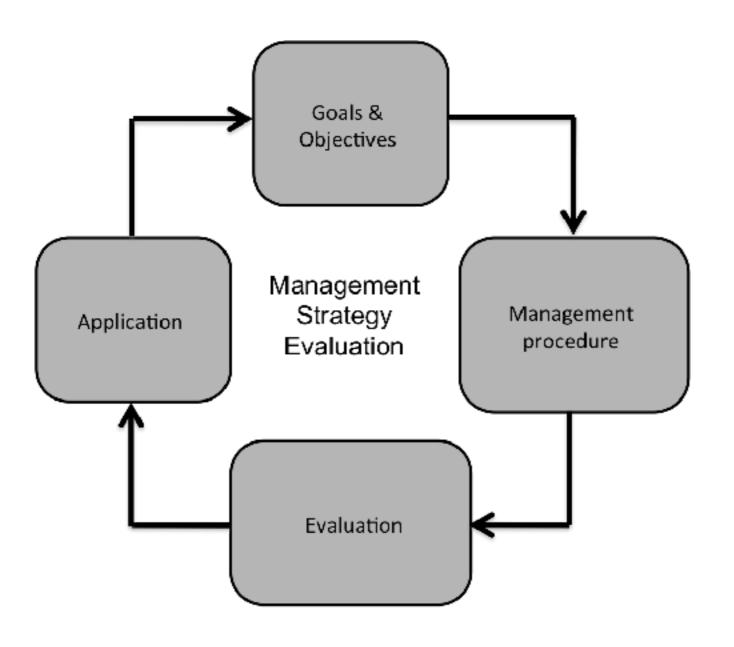
THE 13th SESSION OF THE IPHC Scientific Review Board (SRB013): outcomes, general comments, and specific advice for management strategy evaluation


Sean P. Cox School of Resource and Environmental Management, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6

General comments on MSE process

p22: Commend MSAB on MSE progress related to objectives

p23: MSE is an iterative process: "...it takes 10 years to create an overnight success!"

MSE is an iterative process: BC Sablefish

Aims to build a scientifically defensible harvest strategy

Adapted over time in response to new objectives, information, and hypotheses

Currently, 5th iteration of MSE cycle

- 2008 Empirical MPs, SCA, SSPM
- 2011 SSPM
- 2013 SSPM w Floor
- 2017 SSPM no Floor, lower U
- 2020 SSPM, DDM, Juv Avoidance

General comments on MSE process

p22: Commend MSAB on MSE progress related to objectives

p23: MSE is an iterative process: "...it takes 10 years to create an overnight success!"

p25-26: Proposed objectives adequate for ranking MPs. But, some things to consider

Focus on ENDS objectives

Goal	Objective	Measurable Outcome	Probability	Time- frame	Intent
	1.1. Keep biomass above a limit below which no	a) Maintain a minimum number <i>[spawning potential ratio]</i> of mature female Pacific halibut coast-wide	0.99	Each year	• Ensure that conservation needs of the stock are met for long-term sustainability with a high degree of certainty
	fishing can occur	b) 2) Maintain a minimum spawning stock biomass of 20% of the unfished biomass	0.95	Each year	• Regularly monitor stock biomass (i.e. continuation and improvement of survey and stock
Biological Sustainabilit y	1.2. Account for all sizes in the population?	<i>c)</i>			assessment efforts) to detect changes in status and abundance
	1.3. Reduce harvest rate when abundance is below a threshold	d) Maintain a minimum spawning stock biomass of 30% of the unfished biomass	0.75	Each year	• Define reference points and harvest targets (e.g. MSY)
	1.4. Risk tolerance and assessment uncertainty	e) When Limit < estimate biomass < Threshold, limit the probability of declines	0.05 – 0.5, depending on est. stock status	10 years	• Take a risk-averse approach when the stock is below the threshold

Objective column is mostly "means objectives" or what to do. It should be "ends objectives" or outcomes that MSAB wants. **Measurable Outcome** column has more ends objectives. 5

Separate Biomass and Fishery objectives

Goal	Objective	Measurable Outcome	Probability	Time- frame	Intent
	1.1. Keep biomass above a limit below which no	a) Maintain a minimum number [spawning potential ratio] of mature female Pacific halibut coast-wide	0.99	Each year	• Ensure that conservation needs of the stock are met for long-term sustainability with a high degree of certainty
	fishing can occur	b) 2) Maintain a minimum spawning stock biomass of 20% of the unfished biomass	0.95	Each year	• Regularly monitor stock biomass (i.e. continuation and improvement of survey and stock
Biological Sustainabilit y	1.2. Account for all sizes in the population?	<i>c)</i>			assessment efforts) to detect changes in status and abundance
	1.3. Reduce harvest rate when abundance is below a threshold	d) Maintain a minimum spawning stock biomass of 30% of the unfished biomass	0.75	Each year	• Define reference points and harvest targets (e.g. MSY)
	1.4. Risk tolerance and assessment uncertainty	e) When Limit < estimate biomass < Threshold, limit the probability of declines	0.05 – 0.5, depending on est. stock status	10 years	• Take a risk-averse approach when the stock is below the threshold

1.1) mixes biomass and fishery objectives. The **limit** is usually determined based on biological processes. Where fishing stops is an MP question to be evaluated, not an objective.

Identify key trade-offs

Goal	Objective	Measurable Outcome	Probability	Time- frame	Intent
	1.1. Keep biomass above a limit below which no	a) Maintain a minimum number <i>[spawning potential ratio]</i> of mature female Pacific halibut coast-wide	0.99	Each year	• Ensure that conservation needs of the stock are met for long-term sustainability with a high degree of certainty
	fishing can occur	b) 2) Maintain a minimum spawning stock biomass of 20% of the unfished biomass	0.95	Each year	• Regularly monitor stock biomass (i.e. continuation and improvement of survey and stock
Biological Sustainabilit y	1.2. Account for all sizes in the population?	<i>c)</i>			assessment efforts) to detection to detection of the session of th
	1.3. Reduce harvest rate when abundance is below a threshold	d) Maintain a minimum spawning stock biomass of 30% of the unfished biomass	0.75	Each year	• Define reference points and harvest targets (e.g. MSY)
	1.4. Risk tolerance and assessment uncertainty	e) When Limit < estimate biomass < Threshold, limit the probability of declines	0.05 – 0.5, depending on est. stock status	10 years	• Take a risk-averse approach when the stock is below the threshold

1.1.a) is a trade-off between SPR threshold and probability that needs to be evaluated in MSE before adopting either one (99% may not be realistic). Timeframe cannot be "each year"

7

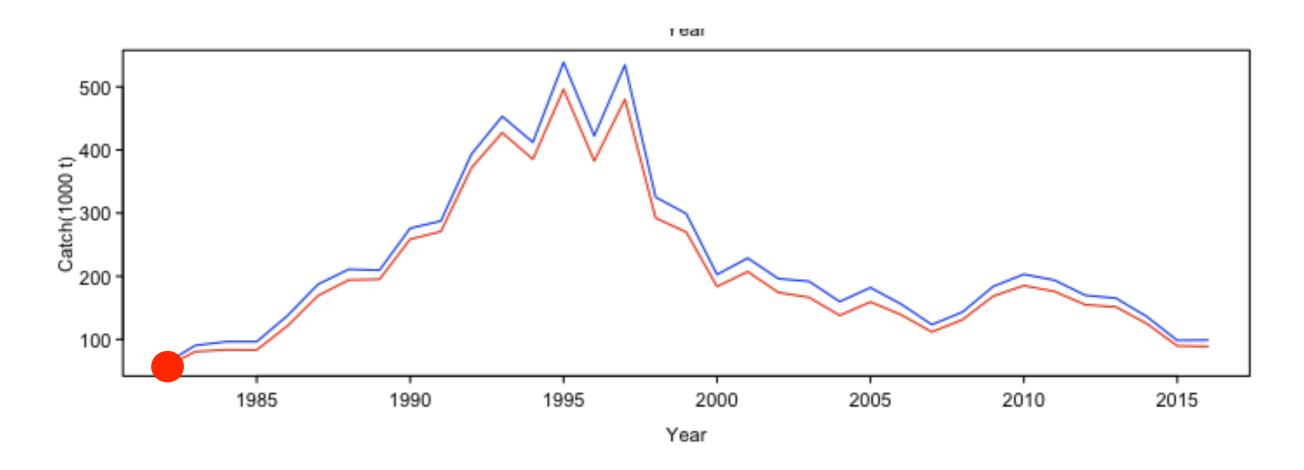
Identify key trade-offs

Goal	Objective	Measurable Outcome	Probability	Time- frame	Intent
	1.1. Keep biomass above a limit below which no	a) Maintain a minimum number [spawning potential ratio] of mature female Pacific halibut coast-wide	0.99	Each year	• Ensure that conservation needs of the stock are met for long-term sustainability with a high degree of certainty
	fishing can occur	b) 2) Maintain a minimum spawning stock biomass of 20% of the unfished biomass	0.95	Each year	• Regularly monitor stock biomass (i.e. continuation and improvement of survey and stock
Biological Sustainabilit y	1.2. Account for all sizes in the population?	<i>c)</i>			assessment efforts) to detect changes in status and abundance
	1.3. Reduce harvest rate when abundance is below a threshold	d) Maintain a minimum spawning stock biomass of 30% of the unfished biomass	0.75	Each year	• Define reference points and harvest targets (e.g. MSY)
	1.4. Risk tolerance and assessment uncertainty	e) When Limit < estimate biomass < Threshold, limit the probability of declines	0.05 – 0.5, depending on est. stock status	10 years	• Take a risk-averse approach when the stock is below the threshold

1.1.b) seems like a more realistic objective than 1.1.a. Still, should examine trade-off between minimum %B0 and probability choices (as well as how B0 is measured).

Infeasible objective

Goal	Objective	Measurable Outcome	Probability	Time- frame	Intent
		a) Maintain directed fishing opportunity	0.95	Each year	• Ensure that the directed fishery has viable fishing opportunities every year
Fishery Sustainabilit y and	2.1. Maintain an economically sufficient	b) Maximize [Optimize?] yield in each regulatory area	0.5	Each year	• Provide directed fisheries that are
Stability and Assurance of	ability d level of catch (i.e., target) across regulatory areas surance of cess – inimize obability Fishery	c) Maintain median catch within ±10% of 1993-2012 average	?	Within 5 yrs	economically beneficial to individual participants, local businesses, and broader
v		d) Maintain average catch at > 70% of historical 1993-2012 average	0.9	Each year	 communities Support efforts to allow continued access to the halibut resource
Closures	2.2. Limit catch variability	e) Limit annual changes in TAC, coast-wide and/or by Regulatory Area, to < 15%		Each year	within acceptable conservation limits


2.1.b) cannot be maximized "each year", especially in "each regulatory area". Probability is irrelevant here - can only maximize average yield over particular timeframes, e.g., short- vs long-term. "Optimize" would need to be defined. Maximization is normally subject to Biomass Sustainability objectives (see slides 14-15 below).

Feasibility of objectives

Goal	Objective	Measurable Outcome	Probability	Time- frame	Intent
		a) Maintain directed fishing opportunity	0.95	Each year	• Ensure that the directed fishery has viable fishing opportunities every year
Fishery Sustainabilit y and		b) Maximize [Optimize?] yield in each regulatory area	0.5	Each year	• Provide directed fisheries that are economically beneficial to individual participants, local businesses, and broader
Stability and Assurance of	level of catch (i.e., target) across regulatory areas	c) Maintain median catch within ±10% of 1993-2012 average	?	Within 5 yrs	
Access – Minimize Probability of Fishery		d) Maintain average catch at > 70% of historical 1993-2012 average	0.9	Each year	 communities Support efforts to allow continued access to the halibut resource
Closures	2.2. Limit catch variability	e) Limit annual changes in TAC, coast-wide and/or by Regulatory Area, to < 15%		Each year	within acceptable conservation limits

One goal of MSE should be to evaluate how realistic 2.1.c/d are, especially with probability 0.9 in d). A minimum viable catch needs to be realistic given history and stock dynamics (e.g., what is the lowest ever halibut catch?)

Example: Western Horse Mackerel Catch, 1981-2016

Industry-chosen Minimum Catch Threshold is 61,000 t for MSE work...way less than 70% of 1993-2016 average

Objectives vs TAC constraints

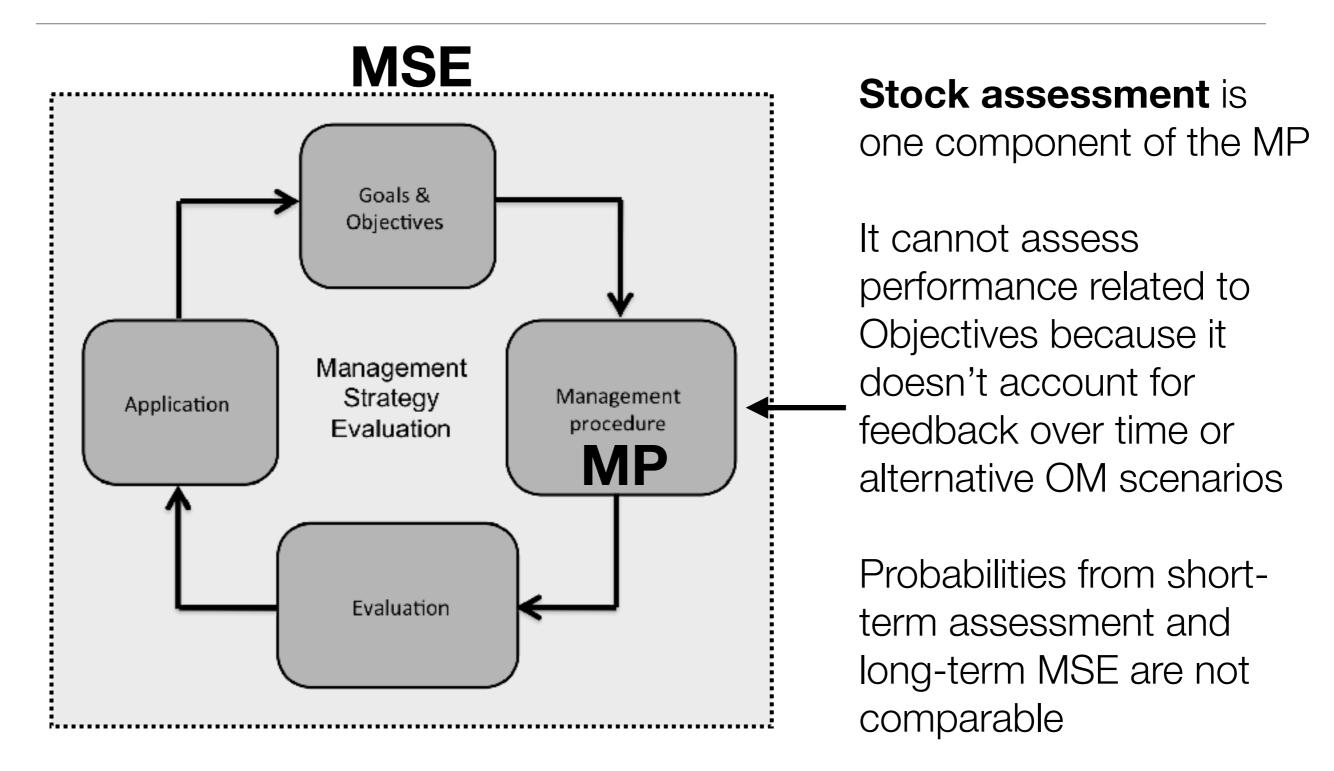
Goal	Objective	Measurable Outcome	Probability	Time- frame	Intent
	level of catch (i.e., target) across regulatory areas	a) Maintain directed fishing opportunity	0.95	Each year	• Ensure that the directed fishery has viable fishing opportunities every year
Fishery Sustainabilit y and		b) Maximize [Optimize?] yield in each regulatory area	0.5	Each year	• Provide directed fisheries that are
Stability and Assurance of		c) Maintain median catch within ±10% of 1993-2012 average	?	Within 5 yrs	economically beneficial to individual participants, local businesses, and broader
Access – Minimize Probability of Fishery Closures		d) Maintain average catch at > 70% of historical 1993-2012 average	0.9	Each year	 communities Support efforts to allow continued access to the halibut resource
	2.2. Limit catch variability	e) Limit annual changes in TAC, coast-wide and/or by Regulatory Area, to < 15%		Each year	within acceptable conservation limits

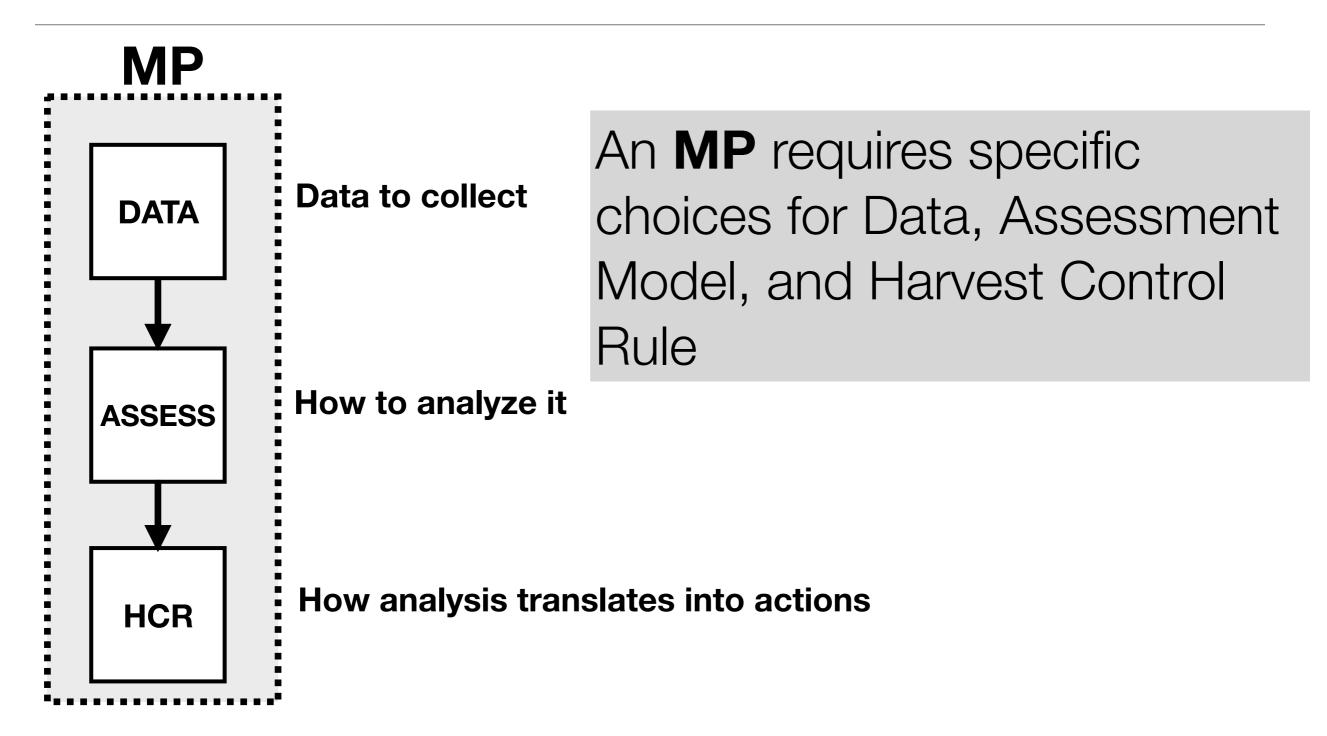
2.2.e) could either be an Objective or a TAC constraint on MP (i.e., SRB-013 p29.b). Needs to be averaged if used as Objective and "each year" if MP (needs evaluation because limit transfers risk from catch to biomass)

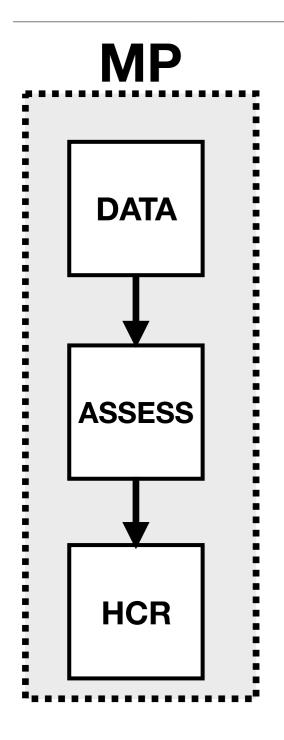
B.C. Herring Biomass Objectives: Prioritized

- Avoid the limit reference point (LRP) of 0.30 B₀ with high probability over three herring generations, where "high probability" is defined as 75-95% (DFO 2009).
- Maintain spawning stock biomass in the Healthy zone, at or above the Upper Stock Reference (USR) of 0.60 B₀, with 50% probability over three herring generations.
- Maintain spawning stock biomass at or above a target biomass level of 0.75B₀ with 75% probability over three herring generations (WCVI only).
- Maintain spawning stock biomass at or above a target biomass level equivalent to the average biomass from 1990-1999, with 75% probability over two herring generations (WCVI only).

USR options

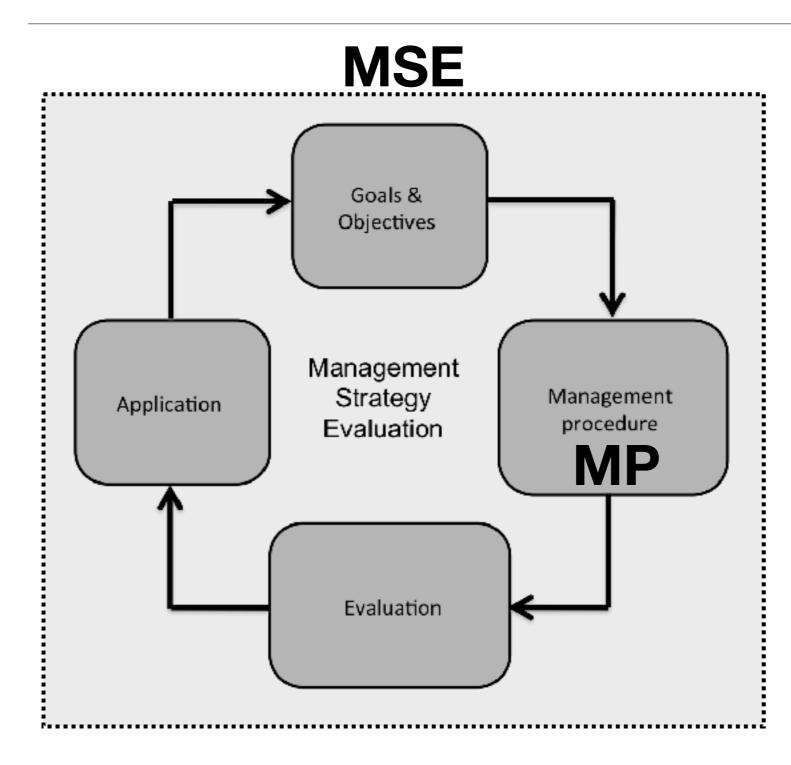

B.C. Herring Fishery Objectives: Prioritized


- Subject to conservation objectives, maintain average annual variability in catch (AAV) of less than 25% over three herring generations
- 6. Subject to conservation objectives, maximize the median average catch over three herring generations.


Fishery yield and yield variability objectives normally conditional on satisfying biomass sustainability...this implements the precautionary approach.

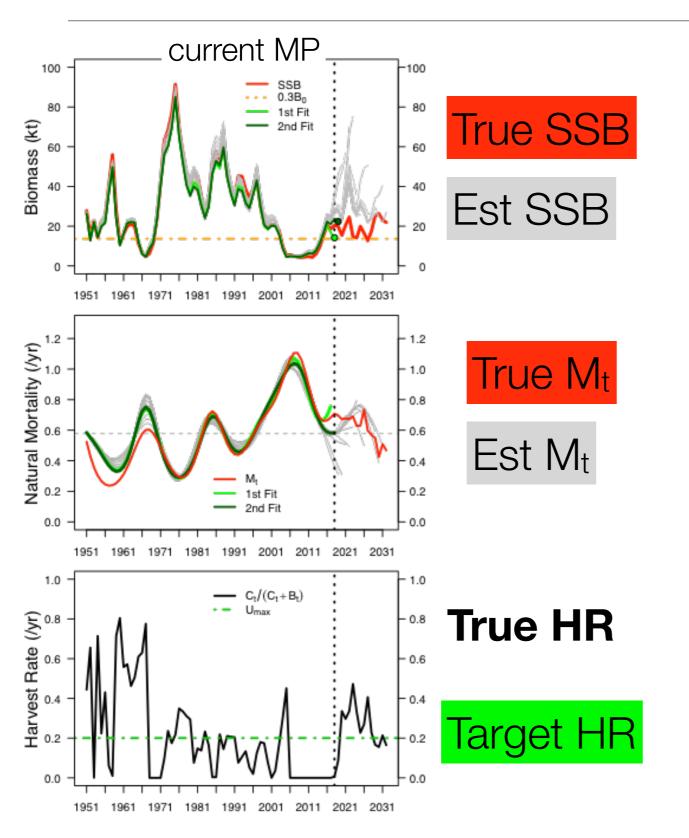
B.C. Sablefish Objectives: Prioritized

- 1. Maintain female spawning stock biomass (SSB) above the limit reference point LRP = 0.4BMSY, where BMSY is the operating model female spawning biomass at maximum sustainable yield (MSY), in 95% of years measured over two sablefish generations (36 years);
- When female SSB is between 0.4BMSY and 0.8BMSY, limit the probability of decline over the next 10 years from very low (5%) at the LRP to moderate (50%) at BMSY. At intermediate stock status levels, define the tolerance for decline by linearly interpolating between these probabilities;
- 3. Maintain the female spawning biomass above (a) BMSY, or (b) 0.8 BMSY when rebuilding from the Cautious zone, in 50% of the years measured over 2 sablefish generations;
- 4. Maximize probability that **annual catch levels remain above 1,992 tonnes** measured over two sablefish generations.
- 5. Maximize the average annual catch over 10 years subject to Objectives 1-4.



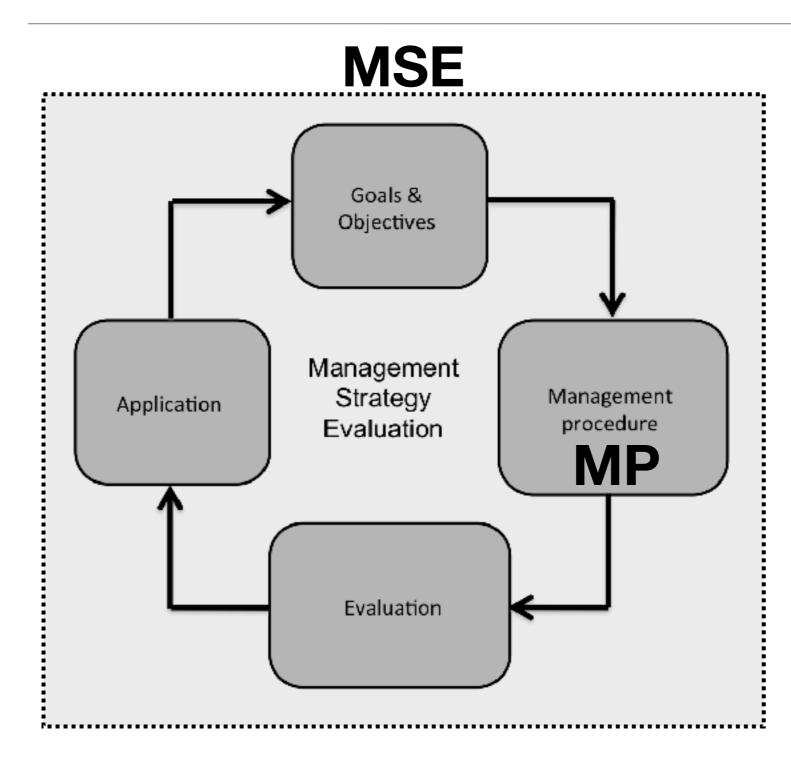
Stock assessments make forecasts to guide specific short-term choices (e.g., TACs)

Forecasts (2-3 yrs) are CONDITIONAL on specific assumptions about models, ensemble wts, and decisions

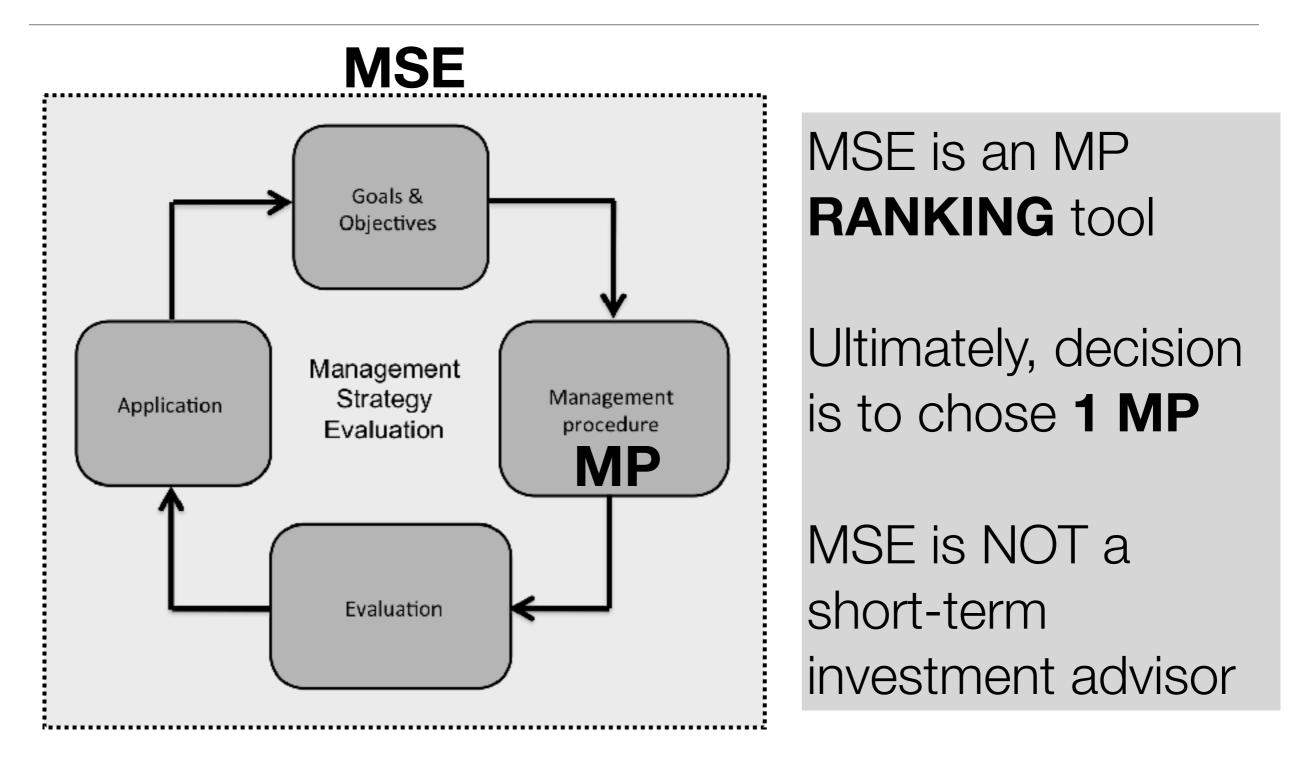

Long-term forecasts lose reliability because they don't account for the errors and decisions made along the way (feedback)

MSE aims to identify a set of **MP** assumptions and choices that, <u>when</u> <u>repeated over time</u>, will help the fishery achieve it's objectives

Accounts for cumulative impact of errors


Example simulation replicate: BC Herring

ERROR: Assessment is consistently wrong...but fits the data great! (not shown)


Poor tracking of changing natural mortality goes undetected

Realized harvest rate is much larger than shown in stock assessment

MSE aims to **rank** MPs based on performance across a range of assumptions and hypotheses

Attempts to be more UNCONDITIONAL than stock assessment

