Management Strategy Evaluation Framework MSAB Meeting Oct 16-17: 2013 IPHC

Outline

- Two Paradigms for decision making
- Best assessment method
- Management procedtie approach
- Müliple model approach
- Tools for examining heaps of simulated outputs.

Two Paradigms

- Best Assessment Approach
- Management Procedure A proach

MSAB HOMEWORK onyoutube, search Doug Butterworth, ICES Keynote https://www:youtube.com/watch?v=S Q6ivffanc

Old Paradigm: Best Assessment Approach

- Develop a single best mode that fits the historical data well.
- Use this mode to estimate parameters that define
\rightarrow reference points (MSY Ensy, Bo),
2 Current stock: size,
- optimal hanvest rates.
-Then develop a TAC based on projected biomass, and application of the harvest control rule.
* The IPHC has some of the best data in the world.
* So why has the best assessment approach been so difficult?
- structural changes to modés
closed area Vs coast wide models
- apportionment constant q
-assumptions mply certanty (e.g., fixed M, coastwide selectivity):

Recent changes to the IPHC halibut assessment

- Solution to retrospective bias using tine varying selectivity
- Improvements to npit data
- Attention to unceriainty
- Decision table \& the Blue Eine"

The Decision Table

"The Blue Line"

* Consistent with the IPHC harvest policy
* This policy is based on:
- The concept of Ebio. fixed selectivity,
- closed area assessmentsfrom the core areas with unique selectivities.
- density dependent growth,
- recruitment is density independent and a function of the PDO
- NONE OETHESEARECONSISTENT WITHTHE RECENT COASTWIDE ASSESSMENT:

However

* The decision table lays bare the consequences of applying a coast wide 1 AG to:
- fishing intensity

4 stock status \& stock trend

- catch trends
- THISTRANSITIONIS:ORCINGDECISION MAKERS TOEXPEICILYCONSIDERRISK

Evolution on the provision of catch advice

Evolution on the provision of catch advice

- a point estimate

Evolution on the provision of catch advice

- a point estimate
- a point estimate with uncertainty

Evolution on the provision of catch advice

- a point estimate
- a point estimate with uncertainty
- a decision table expressing the probability of something bad happening

Evolution on the provision of catch advice

- a point estimate
- a point estimate with uncertainty
- a decision table expressing the probability of something bad happening
- decision table based on the output of multiple models

New Paradigm: Management Procedure Approach

Assess the consequences of a range of management strategies and present the results that exposes the tradeoffs across the range of management objectives."

Steps in the MSE process

 (According to Doug Butterworth)
Steps in the MSE process (According to Doug Butterworth)

1. Specify alternative plausible models of the resource and fisheries dynamics (Operatingmodels-QMS)

Steps in the MSE process (According to Doug Buitterworth)

1. Specify alternative plausible models of the resource and fisheries dynamics (Operating models:OMS)
2. Condition OMs on existing data (eo alternative assessments), and specify alternative management procedures (MP's)

Steps in the MSE process (According to Doug Buitterworth)

1. Specify alternative plausible models of the resource and fisheries dynamics (Operating:models:OMS)
2. Condition OMs on existing data (E. alternative assessments), and specify alternative management procedures (MP's)
3. Specify fisheries obectives and translate into performance measures (ie: role of the MSAB)

Steps in the MSE process (According to Doug Buitterworth)

1. Specify alternative plausible models of the resource and fisheries dynamics (Operating models OM'S)
2. Condition OMs on existing data (eo alternative assessments), and specify alternative management procedures (MP'S)
3. Specify fisheries objectives and translate into performance measures (ie eole of the MSAB)
4. Simulation test each MPacross all OMS (my job) and look for a procedure that s robust to uncertainty and provides the Sest trade off in performance measures (MSAB)

Under this new paradigm, how will the decision table differ?

- Shortanswer wont

Long Answer: the objectives \& chosen MP determine the appropriate row in each column.

Objective 2:
 SSB > 0.2, 99/100, each year

		HR		Spa	ning biom	ass		Fisher	CEY	
	Coastwide	2013			14		2016	20	14	
	(total removals) millions lb	greater than target	is less than 30%	is less than 20%	is less than 2013	is 5\% less than 2013	is less than 2013	is less than 2013	is 10% less than 2013	Effective coastwide harvest rate
No removals	0.0 (0.0)	0\%	25\%	<1\%	23\%	<1\%	41\%	0\%	0\%	0.0\%
FCEY = 0	0.0 (16.5)	<1\%	25\%	<1\%	76\%	2\%	95\%	0\%	0\%	6.9\%
	3.4 (20.0)	<1\%	25\%	<1\%	77\%	2\%	96\%	<1\%	<1\%	8.8\%
	12.9 (30.0)	1\%	25\%	<1\%	79\%	2\%	97\%	1\%	<1\%	14.2\%
	17.7 (35.0)	23\%	25\%	<1\%	80\%	2\%	97\%	19\%	10\%	16.8\%
Blue Line	22.7 (40.2)	50\%	25\%	<1\%	82\%	3\%	97\%	48\%	31\%	19.6\%
	27.3 (45.0)	75\%	25\%	<1\%	83\%	3\%	98\%	75\%	64\%	22.2\%
Midpoint: 2012 Limit and Blue Line FCEY	28.1 (45.9)	76\%	25\%	<1\%	83\%	3\%	98\%	76\%	68\%	22.6\%
	32.1 (50.0)	84\%	25\%	<1\%	84\%	3\%	98\%	85\%	77\%	24.8\%
2012 Catch limit	33.5 (51.5)	90\%	25\%	<1\%	84\%	3\%	98\%	90\%	79\%	25.7\%
2011 Model x HR	36.2 (54.3)	97\%	25\%	<1\%	85\%	4\%	98\%	97\%	87\%	27.2\%
	41.6 (60.0)	>99\%	25\%	<1\%	86\%	4\%	99\%	>99\%	99\%	30.2\%
		a	b	C	d	e	f	g	h	

Long Answer: the objectives \& chosen MP determine the appropriate row in each column.

The "blue line" becomes "blue cells" which exposes trade-offs among objectives (hence the need for priority)

Objectives must include:

- State
- e.g, biomass, catch depletion revenue bycatch
- Duration
- le a time frame which to achieve said objective
- Probability

4 le, how bad do you want to achieve that objective.

Importance of clearly defined objectives

- Short-term vs long term: obectives may oliffer.
- Consider strategies to phase in transitions to a new MP.
- Must rank or weight each of the primary objectives.
- Important: \& useful for eliminating candidate management procedures.

Questions?

Banksy

