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1 INTRODUCTION 
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Chapter 1

Introduction

This technical document describes the Management Strategy Evaluation (MSE) framework and
its elements, details specifications of the framework for the evaluation of scale and distribution
management procedures, provides definition of terms used, and defines the technical details of the
models and equations used within the framework. This is a working document that will be revised
often as development of the MSE framework progresses. Therefore, this document is currently
incomplete and will have occasional revisions.

1.1 Management Strategy Evaluation

MSE is a process to evaluate harvest strategies and develop a management procedure that is robust
to uncertainty and meets defined objectives, and can be partitioned into four separate components
that interact with each other (Figure 1.1). Management Procedures (MPs) are defined, often with
input from stakeholders and managers but not necessarily, and evaluated against objectives which
are determined with input from stakeholders and managers. Simulations of the various MPs are
performed and evaluated against the objectives to identify the best performing MP to apply within
a harvest strategy policy.

A harvest strategy policy can be implemented in a number of ways. Many fisheries are managed by
applying the chosen management procedure each management cycle and implementing the results
as management. Other agencies use the outcomes of the management procedure as a reference
from which other considerations (e.g., socio-economic) are taken into account when determining a
tactical decision of the management outcomes. This variability around the management procedure
is called implementation variability and should be a part of the simulations and evaluation.

The four boxes shown in Figure 1.1 are all important component of an MSE. The objectives are
the connection to stakeholders and managers. Performance metrics are derived from well defined
objectives that are used in the evaluation. Management procedures are the link to a transparent
management process and need to be clearly defined so that they are formulaic and can be written
as computer code for the closed-loop simulations. The closed-loop simulations also consist of an
operating model which simulates the population and produces the observations needed for the
management procedure. Applying the best performing MP is the goal of MSE but is not the
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Figure 1.1: An illustration of the closed-loop simulation within the MSE framework consisting of an
operating model and a management procedure.

end. The MSE should be updated as additional observations and knowledge is gained from the
population, fishery, or management process.

The engine of the MSE framework is the closed-loop simulation with the operating model (OM) and
management procedure (Figure 1.2). The OM simulates the dynamics of the population and the
fisheries that interact with it. The processes simulated by the OM can be thought of as processes
that management does not, or chooses not, to control. For example, natural mortality is not a
process that is not managed, and some aspects of the fisheries are not managed (e.g., specific daily
decisions). These unmanaged processes result in variability that is normal to the system, referred
to as ‘natural variability’ in this document, and is simulated by the OM.

The MP consists of elements that are managed and may include data collection and monitoring,
estimation models, and the harvest rules that determine how the fisheries are managed. MSE can
evaluate any of these elements including how changes in monitoring, and different estimation model,
or various harvest rules affect the outcomes. This elements may be simple or complex.

The chapters in this document begin with a generalized operating model that can be specified for
any fish population. The following chapter presents the specifications of the MSE for Pacific halibut
fisheries, and the sections within that chapter follow the three boxes in Figure 1.1 labeled Goals &
Objectives, Management Procedure, and Simulation.
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Figure 1.2: An illustration of the closed-loop simulation within the MSE framework consisting of an
operating model and a management procedure.
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Chapter 2

Operating model

In a management strategy evaluation (MSE), operating models (OM) simulate the population and
fishery dynamics. It incorporates life-history processes such as recruitment, growth, migration,
maturation, and mortality of the fish population, as well as fishery processes such as selectivity,
availability, and catchability. Descriptions of the various processes are provided below along with
the mathematical equations used to simulate those processes. Many of the details are drawn from
the Hilborn and Walters (1992), Quinn and Deriso (1999), the CASAL manual Bull et al. (2012),
Stock Synthesis technical details Methot and Wetzel (2013), and the Coleraine manual Hilborn
et al. (2000).

There is uncertainty in the parameterization of the processes, natural variability in the processes,
and multiple hypotheses about the mechanisms of the processes. These three sources of variability
are introduced in three different ways.

1. Parameter uncertainty is introduced by conditioning the operating model to data, and deter-
mining the distribution of uncertainty for each parameter as well as correlation with other
parameters. Parameter values for an individual simulated trajectory are randomly drawn from
the multivariate estimated probability distribution. Therefore, each simulated trajectory uses
a different set of parameters, thus including variability that represents the uncertainty in the
parameters. This is described in Section 2.4.

2. Natural variability is introduced by defining a random process associated with various con-
cepts. For example, recruitment varies naturally and is modelled by including random deviates
applied annually to average recruitment. Other processes may have specific patterns such as
changes in weight-at-age. This is described in Section 2.5.

3. Structural uncertainty is included by defining multiple hypotheses and implementing them as
separate operating models. For example, growth may occur in different ways between models.
Or, data may be structured in a different way when conditioning the model. Structural
uncertainty captures the variability that can not be captured by the two methods above.

Parameters that will have uncertainty are defined (and those that are fixed are given fixed values),
methods to include natural variability are defined, and potential areas of structural uncertainty are
noted.

8
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2.1 The state object

The state is the accounting of the population in numbers within an operating model and is contained
in a state object with many dimensions. The state represents the intrinsic characteristics of the
modeled population: age, maturity, and sex. This state is then evolved on a computational domain
parameterized by time and space, which are extrinsic variables. Furthermore, sectors (fisheries and
survey) interact with the state. Clarified this way, the state object contains a representation of the
stock at a place and time and can be subsetted along any of these axes as needed to determine the
state for any combination of these dimensions.

The dimensions are fixed inputs that are defined by the user, thus may be unique to any operating
model. The different dimensions, and maximum ranges, are shown in Table 2.1. Maturity state
(immature or mature) is not included as a dimension here (specifically for the Pacific halibut
operating model) but may be a useful charactersitic to track for some stocks, depending on fishing
intensity and the proportion maturing at age. Instead, the mature population is determined using
the proportion mature at age, which can be applied to various dimensions of the population state
(see Section 2.3).

Table 2.1: Partitions of the state object that are fixed inputs and the likely minimum and maximum
input for each partition.

Dimension
Variable Min Max Description
Age (a) 1 251 Age classes ranging from 0 to 250. Halibut will likely use 0 to 30

and age always starts at zero. A capital A indicates the maximum
age

Sex (s) 1 3 Sex, which includes female, male, and unsexed, in that order, la-
beled 1, 2, and 3.

Time (t) 0 ∞ A minimum and maximum time-step (e.g., year) is input by user.
The difference +1 determines the number of time-steps. These are
not projected time-steps, but time-steps modelled to condition the
OM. A time-step will typically be a year, but specific points in
time (e.g., beginning, middle, or end of the year) may be noted in
a superscript (see below).

Region (r) 1 ∞ Number of spatial regions with migration between
Area within Region (rl) 1 ∞ Number of areas within a region. Migration is not modelled be-

tween areas.
Sector (f) 1 ∞ Number of fishing-related sectors, which includes fisheries and sur-

veys. Sectors typically will operate at the region level or a finer
scale, but there may be a case where a sector operates across re-
gions (which is unlikely for the Pacific halibut operating model).

The state object is the key component of the population dynamics and must contain sufficient
information to determine the population dynamics as well as any intermediate calculations, such as
fishery catches. In this implementation, there are always six partitions, but some operating models
may have a partition with only one element, effectively eliminating that dimension. For example,
a single-sex, single-area model with no maturity partition would simply be a matrix of years and
ages.

9 of 54



MSE framework, DRAFT October 18, 2020 IPHC-2020-MSAB016-INF01

2.2 Notation

Notation of the variables in the operating model uses the concept of defining a quantity of the popu-
lation (such as numbers or biomass), subscripted by various characteristics (intrinsic and extrinsic)
and superscripted by specific concepts (such as spawning or exploitable). The subscripts reflect
the intrinsic and extrinsic characteristics of the population by listing the intrinsic characteristics
first (age and sex), followed by the extrinsic characteristics (time, region/area, and fishing sector).
The possible subscripts are defined in Table 2.1 and are always subscripted in the order presented
in those tables. For example, the numbers for age and sex in a year and region is Na,s|y,r. When
a subscript is not included, it is implied that the quantity is a summation over that index (or the
index doesn’t apply, as in the case of fishing sector) and ambiguity will be alleviated using the
letter associated with the index when necessary (e.g., Ns=1|y=1 is the number of females in year 1
summed over all ages and regions).

Variables specific to a fishing sector (f) include a subscript for that sector at the end. For example,
the catch-at-age for females from sector f in year 1 and region 2 would be notated as Ca,1|1,2,f .
Fishery sectors typically will operate at the region level or a finer scale, but the region subscript
is retained for clarity and in case a sector does operate across regions (which is unlikely for the
Pacific halibut operating model).

Finally, superscripts are used to notate specific concepts such as spawning biomass, which would
be notated as Bsp

s=1|y=1 to represent the spawning biomass for females in year 1 over all regions.
Additionally, a superscript that is a number between 0 and 1 indicates the time in the year that the
quantity is calculated. For example, Bsp,0, Bsp,0.5, Bsp,1 would be the spawning biomass calculated
at the beginning of the year, middle of the year, and end of the year, respectively. Possible
superscripts and their definition are shown in Table 2.2.

Table 2.2: Superscripts for variable and their meaning.

Variable Description
ma Mature
sp Spawning. Most often used with Bsp to represent spawning biomass.
sr Selected and retained referring to the fish that are landed by a fishery sector.
n Numbers. Indicates that a quantity, such as catch, is in numbers (Cn). Note that

if a superscript is not used on catch, it is in weight.
′

Denotes update made to numbers-at-age after partial timestep is complete, which
includes the effect of movement but not mortality.

′′
Denotes update made to numbers-at-age at the end of the timestep.

Number 0-1 A number between zero and 1 (inclusive) indicates the time within the year. For
example, 0 indicates beginning of the year, 0.5 indicates middle of the year, and 1
indicates end of the year.
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2.3 Population dynamics

The population dynamics are modelled as an age-structured annual process accounting for changes
in the numbers-at-age for each partition within the state (e.g., age and sex).

The sequence of processes from the start of the time-step (typically annual) is

1. age increment,

2. recruitment (based on spawning biomass calculated at end of previous time-step or at the
beginning of the current time-step),

3. movement,

4. mortality. The sequence of mortality from all sources is theoretically described below, but
does not need to be specifically modelled as such because the mortality calculations will
appropriately account for the sequence, as described in Section 2.3.4 and a later Appendix.

(a) portion of natural mortality,

(b) fishing mortality for one or more sectors,

(c) portion of natural mortality,

(d) fishing mortality for one or more sectors,

(e) etc., until a full time-step of natural mortality has been applied

5. spawning.

The state object (Na,s|t,r) is updated at three different points in the annual process, and superscripts
note the time point.

N : Beginning of the time-step after age increment and recruitment of age 0.

N
′

: After movement before mortality

N
′′

: End of the time-step, after all natural and fishing mortality

At any point in time, the biomass may be desired and can be calculated from numbers-at-age
(Na,s|t,r) and weight-at-age (Wa,s|t,r).

Ba,s|t,r = Na,s|t,rWa,s|t,r(2.1)

Various partitions of biomass may be desired. For example, spawning biomass is the weight of
spawning fish, and exploitable biomass is the weight of fish available to a specific sector. Biomass
can also be calculated at specific points of time in the time-step. These various types of biomass
will be defined in the sections below, and will be noted with a superscript. For example, spawning
biomass is Bsp

y .

This section describes the technical specifications of the general population dynamics and how the
historical population can be modelled given inputs such as catch and weight-at-age, as well as
parameters that may be fixed or estimated from data. Conditioning the operating model is the
process of determining the range of parameters and hypotheses that describe the observations, and
is covered in Section 2.4. Projecting the population forward in time is discussed in Section 2.5, and
involves defining random and fixed processes such as recruitment and changes in weight-at-age.
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2.3.1 Age increment

The numbers-at-age at the beginning of the time-step with an annual time-step is obtained by
incrementing the previous time-step’s age class to one time-step older and calculating recruitment
for age 0.

(2.2) Na,s|t,r =

Rs|t,r a = 0

Na−1,s|t−1,r 1 ≤ a < A

Na−1,s|t−1,r +NA,s|t−1,r a = A

2.3.2 Recruitment

Recruitment is a function of the spawning biomass calculated from the end of the previous time-
step after all of the processes (movement and mortality) have occurred. See Section 2.3.6 for a
description of spawning biomass.

Rs|t,r = pRy,r × pRs × f(Bsp,1
s=1|t−1)× e(εy,r−by

σ2R
2

) × eIyδ(2.3)

where py,r is the proportion recruiting to region r in time-step t, ps is the proportion of sex s

(typically 0.50), f(Bsp,1
s=1|t−1) is the equilibrium stock-recruit relationship using the end of the time-

step spawning biomass (superscripts) for females from the previous time-step (subscripts), eε is the
annual deviation in recruitment for time-step t, b is a bias-correction multiplier, and eIy∗δ is an
overall adjustment for recruitment regime shift.

Density-dependent Recruitment

Density-dependence in the spawner-recruit relationship is modelled using a Beverton-Holt formu-
lation.

f(Bsp,1
s=1|t−1) =

Bsp,1
s=1|t−1

a+ bBsp,1
s=1|t−1

(2.4)

where the parameters a and b are determined from steepness (h), unfished equilibrium recruitment
(R0), and unfished equilibrium female spawning biomass (Bsp

0 ).

a =
(1− h)Bsp

0

4hR0
(2.5)

b =
5h− 1

4hR0
(2.6)

Steepness (h) is a parameter noting the percentage of unfished equilibrium recruitment (R0) that
occurs when the female spawning biomass is 20% of unfished equilibrium female spawning biomass
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(Bsp
0 ). This can be shown using equations 2.4 and 2.5, and assuming that female spawning biomass

is 1
5

th
of unfished equilibrium female spawning biomass.

1/5Bsp
0

(1−h)Bsp0
4hR0

+ 5h−1
4hR0

(1/5Bsp
0 )

=
1/5

1−h+1/55h−1/5
4hR0

=
4/5hR0

4/5

= hR0

The same method can be used to show that B0 results in R0. An example Beverton-Holt stock-
recruit curve with a steepness of 0.70 is shown in Figure 2.1.

Figure 2.1: An example Beverton-Holt stock-recruit curve with a steepness (h) of 0.70.

The parameter for steepness is typically fixed because accurate estimation requires data informative
of recruitment at low biomass levels and variability in recruitment often reduces the information
content. The parameter R0 is often estimated, and Bsp

0 can be calculated from R0 and other life
history parameters. Given those three parameters, a and b can be calculated.

Recruitment Deviation

Recruitment varies around the stock-recruit curve, which is defined as mean recruitment. The
distribution of recruitment is assumed to be lognormal and is parameterized using a Gaussian
distributed deviate with an exponentiated mean of one and a variance notated as σ2

R.

εy,r N(µ = 0, σ2
R)(2.7)
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The arithmetic mean of the lognormal distribution is eµ+σ2R/2, and becauseR0 is unfished equilibrium
mean recruitment, a bias correction must be applied when simulating log deviates from a normal

distribution with a mean/median equal to zero. As shown in equation 2.3, e(εy,r−σ2R/2) is used where
the bias correction is −σ2

R/2. This ensures that unfished equilibrium recruitment is, on average, R0
(e.g., the mean of the biased corrected exponentiated deviate is equal to 1). Figure 2.2 shows an
example simulation without fishing when bias correcting and not bias correcting, and (Methot and
Taylor 2011) present an analytical proof why bias correction is necessary.

Figure 2.2: An example simulated projection of spawning biomass with no fishing mortality from an
age-structured model with σR = 1 and bias-corrected recruitment deviates (blue line) and
recruitment deviates not bias-corrected (purple line). A simulated trajectory with σR = 0
is shown by the flat black line, and the means of each simulated trajectory are shown by
the appropriate colored square to the right.

Full bias-correction is necessary when simulating the fish population because the full lognormal
distribution is used to simulate deviates, as shown in Figure 2.2. However, during estimation,
information is reducing the uncertainty (i.e, distribution) around a deviation, and pulling it away
from a value of zero. Therefore, a deviate without any information during estimation will be zero
and not need bias correction, but a deviate that is fully informed (i.e., known exactly as in a
simulation) will need full bias correction. In most estimation models, deviates are not often fully
informed and a partial bias-correction is necessary. (Methot and Taylor 2011) provide a much more
detailed discussion of this phenomenon. The parameter by is included in equation 2.3 to allow for
bias-correction if needed during estimation.

The recruitment process is a coastwide process with age-0 recruits distributed to regions. Therefore,
the deviates may be region-specific, but it may be more appropriate to use a single coastwide
deviate for each year and simulate region-specific variability across time-steps with the parameters
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representing the proportion recruiting to each region (pRy,r). Using region-specific deviates and
proportion of recruits may be confounding.

Recruitment Distribution

Recruitment of age-0 fish to the population is determined from spawning biomass, and depending on
the settlement process for a fish species and ocean dynamics, an age-0 fish may recruit a considerable
distance from where spawning occurred. Furthermore, fish may migrate to spawning regions that
are far from regions they occupied when not spawning. Therefore, the recruitment process is
modelled assuming a coastwide spawning population (e.g., fish may spawn in regions where they
are not present during the time of fishing) producing age-0 fish (recruits) throughout specified
regions. The proportion of recruits in each region in each year is represented with the parameter
pRy,r as shown in equation 2.3, and r− 1 parameters need to be specified for each time-step because

the rth parameter is one minus the sum of the specified parameters (ie.,
∑

r p
R
y,r = 1).

Recruitment Link to an Environmental Variable

Recruitment is modelled (equation 2.3) using a stock-recruit relationship (equation 2.4) that pro-
duces an average level of recruitment given current spawning biomass. Changes in the environment
may change that average level of spawning biomass and is modelled using an environmental index
(Iy) in equation 2.3 with the function eIy∗δ. The parameter δ is a covariate determining how the
average recruitment is affected by the environmental index.

2.3.3 Movement

In its most simple form, movement (also called migration) is the proportion of individuals that
move from region j to region k (individuals can only move among regions and movement among
areas within regions is not explicitly modelled). The probability that the individual stays in its
current region is equal to one minus the sum of the probabilities of moving out of the current region.
Movement is specific to the partitions age, sex, time-step, and region.

One of the most common ways to model movement is using a transition matrix. Let Ψj→k be the
instantaneous movement from region j to region k expressed as the proportion of the population in
region j moving to region k. The diagonal of the transition matrix will be the proportion that stay
in region j and the off-diagonals of Ψj→k will represent the proportions that move out of region
j. The row of the matrix corresponds to j (from) and k corresponds to the column of the matrix
(to). Each row of the transition matrix should sum to 1. Each dimension of the transition matrix
will be equal to the number of regions. For example, let there be n regions (R = 1...n), then the
transition matrix for each age, sex, and time-step will look like:


ΨR=1 Ψ1→2 · · · Ψ1→n
Ψ2→1 ΨR=2 · · · Ψ2→n

...
...

. . .
...

Ψn→1 Ψn→2 · · · ΨR=n
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The numbers-at-age in region j after movement, for a given age, sex, and time-step, is determined
from the following equation.

N
′

a,s,|t,r=j = N|r=j −N|r=j
∑
k 6=j

Ψa,s|t,j→k +
∑
k 6=j

N|r=kΨa,s|t,k→j

= N|r=j

1−
∑
k 6=j

Ψa,s|t,j→k

+
∑
k 6=j

N|r=kΨa,s|t,k→j

= N|r=jΨa,s|t,j→j +
∑
k 6=j

N|r=kΨa,s|t,k→j

=
∑
k∈r

N|r=kΨa,s|t,k→j(2.8)

Movement parameters

There are two options for the construction of the transition matrix:

1. entered as simple proportions in an array by time-step, age, sex, and region of origin, or

2. parameterize the proportions-at-age as a function of age and modify the parameters of the
function for each time-step and sex.

A parameterized approach is implemented using functions called constant (Equation 2.9), exponen-
tial (Equation 2.10), or double exponential (Equation 2.11). Additionally, specific values for defined
ages can be entered Values (Equation ??)

(2.9) Ψa,s|t,k→j =

{
0 a ≤ ψ0

ψc a > ψ0

where, ψ0 is the oldest age with a movement probability of zero before the first non-zero movement
probability, and ψc is a constant proportion for all ages greater than ψ0.

(2.10) Ψa,s|t,k→j =

{
0 a ≤ ψ0

eψλ (a−ψ0+1)

max(Ψa,s|t,k→j)
× (ψmax − ψmin) a > ψ0

where, ψ0 is the oldest age with a movement probability of zero before the first non-zero movement
probability, ψλ is the slope parameter of the exponential function, ψmin is the minimum non-zero
probability, and psimax is the maximum probability.

(2.11) Ψa,s|t,k→j =


0 a ≤ ψ0

e
ψλL

(a−ψ0)−1

max(Ψa,s|t,k→j)
ψmaxL ψ0 < a ≤ ψpeakL

(ψmaxR − ψa)e−ψλR(a−ψ0+1) + ψa a > ψpeakL
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where, ψ0 is the oldest age with a movement probability of zero before the first non-zero movement
probability, ψλL is the slope parameter of the exponential function for the left side of the function,
ψλR is the slope parameter of the exponential function for the right side of the function, ψmaxL is
the maximum non-zero probability on the left side of the curve, , ψmaxR is the maximum non-zero
probability on the right side of the curve, ψpeakL is the age associated with the peak of the left
curve.

(2.12) Ψa,s|t,k→j =

{
0 a ≤ ψ0

ψva a > ψ0

Overall, the followng are the possible parameters in the four functions described by equations 2.9
to 2.12 that may be specific to a sex, time, and region.

1. ψ0: The oldest age with a movement probability of zero before the first non-zero movement
probability. Therefore, all ages from age 0 to age ψ0 do not move out the region they are in.

2. ψc: The constant non-zero probability of movement.

3. ψλ: The ‘slope’ of the exponential function in either the exponential function or associated
with the left (λL) or right (λR) side of the double exponential.

4. ψmin: The minimum non-zero probability of movement-at-age in the exponential function.

5. ψmax: The maximum probability of the movement-at-age in the exponential function or for
the left (maxL) or right (maxR) side of the double exponential function.

6. ψpeakL : The age at which the peak of the left (peakL) side of the double exponential occurs.
This is the transition between the left and right sides of the double exponential function. This
parameter is an integer and the peak of the right side is one greater than ψpeakL .

7. ψa: The asymptote of the right side of the double exponential function.

8. ψva : Specific probability-at-age. Subsequent values after the last entered age are set to the
last entered age.

2.3.4 Mortality

These operating models contain two types of mortality: natural mortality and fishing mortality.
These are described below with definitions and mathematical equations. Total mortality, the sum-
mation of natural and fishing mortality, is noted as Z and is often modelled using a differential
equation describing the instantanous change with respect to a short period of time.

dN

dt
= −Z ×N

Expanding to a single annual time step, the numbers in the next time-step, if mortality was the
only process, are

Ny+1 = Nye
−Z(2.13)
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However, fishing mortality is often assumed to occur at a specific point in time.

Ny+1 = Nye
−M (1− Uy)(2.14)

where Uy is an annual exploitation rate. This formulation makes the calculations simpler, faster,
and easier to interpret. These equations are general mortality equations, and the specific equations
related to natural and fishing mortality for the operating models are described below. We follow the
FAO definition (http://www.fao.org/3/a0212e/a0212e12.htm})and call the fishing mortality
process in Equation 2.13 instantaneous and that in Equation 2.14 finite.

Natural Mortality

Natural mortality represents mortality from all sources other than fishing (e.g., natural causes,
predation, and emigration out of the area being modelled) and may reflect some processes that are
not specifically accounted for in the model. Many fisheries models assume that natural mortality
is constant over time, which will likely capture the general trend in abundance, but natural mor-
tality likely varies from time-step to time-step. Therefore, the operating model allows for natural
mortality that is age, sex, time-step, and region specific, but will likely assume a single value for
natural mortality for each sex.

Fishing Mortality

Fishing mortality can be modelled using the Baranov catch equation (an instantaneous formula-
tion as with natural mortality), but it is simpler, faster, and more interpretable to model fishing
mortality as a finite exploitation rate (also called Pope’s approximation). This assumes that fishing
occurs at a specific point in time, which will be an important assumption to consider when the
fishery operates year round and at high mortality rates. For most applications, especially Pacific
halibut with relatively low fishing mortality rates and a defined season, the exploitation rate is a
useful approximation.

U|t,r,f =
C|t,r,f

B
sr,pf
|t,r,f

(2.15)

where C|t,r,f is the catch in time-step t and region r for sector f , and Bsr
|t,r,f is the selected-and-

retained biomass for that fishery. The time-point is the proportion of the time-step, pf , at which
the fishery occurs, and is commonly defined as 0.5. The fishing sectors typically operate at a
scale finer than region, but region is used in the equations for fishing mortality because a single
Pacific halibut may be available to any of the sectors in a region throughout an annual time step.
Therefore, sectors are tracked at the region level, but may represent fishing in a particular area
within a region (through selectivity and fishery timing, pf ). If a sector operates at a greater scale
than region, that sector should be divided into region-specific sectors. In other words, a sector only
operates within a region. Therefore, the region and sector subscripts are redundant, but retained.

Selectivity represents the probability that a fish of a particular age will be caught by the sector.
This is a combination of gear selection (e.g., the size of the hook or the width of mesh in a net) and
availability (are fish of that age in the area being fished). We do not separate these components
and instead model them as a single probability. The selected proportions at age generally increase
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from young ages to older ages, but may also decline at the oldest ages. This is referred to as dome-
shaped selectivity and may occur because older fish move out of the fishing area and become less
available to the fishery, older fish may be able to avoid or escape the fishing gear, etc. Selectivity
in this model is forced to asymptote at one (and not greater) for at least one age. Therefore,
the exploitation rate refers to the proportion of a fully selected age-class of fish removed from the
population.

The proportion selected at age can be entered specifically for each age, modelled using a logistic
formulation to asymptote at one (equation 2.16),

(2.16) Sa,s|t,r,f =
ζmax,s|t,r,f

1 + 19
(ζa50,s|t,r,f−age)/(ζa95,s|t,r,f−ζa50,s|t,r,f )

or modelled using a double-normal function to allow for dome-shaped selectivity (equation 2.17).

(2.17) Sa,s|t,r,f =


ζmax,s|t,r,f

e
−(a−ζpeak,s|t,r,f )

2

2ζσL,s|t,r,f
age < ζpeak,s|t,r,f

Max

[
ζmax,s|t,r,f

e
−(a−ζpeak,s|t,r,f )

2

2ζσR,s|t,r,f
, ζfinal,s|t,r,f

]
age ≥ ζpeak,s|t,r,f

Parameters are described below. Examples of these two parameterizations are shown in Figure
2.3. Additional parameterizations may be introduced in the future. An option for all selectivity
parameterizations is to define the age at which selectivity is zero for that age and all lower ages.
This parameter is ζzero,s|t,r,f .

There are three parameters in the logistic function for selectivity.

1. ζa50,s|t,r: The age at which the probability of selection is 50% for sex s, at time t, for sector
f .

2. ζa95,s|t,r: The age at which the probability of selection is 95% for sex s, at time t, for sector
f .

3. ζmax,s|t,r: The maximum probability of selection (asymptote) for sex s, at time t, for sector
f .

There are five parameters in the double normal function for selectivity.

1. ζpeak,s|t,r: The age at which the probability of selection is at its maximum for sex s, at time
t, for sector f . This is the division between the left and right sides of the function.

2. ζσL,s|t,r: The standard deviation of the normal distribution for ages younger than the peak
age (ζpeak,s|t,r). This side of the selection curve is referred to as the left side or ascending
limb.
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3. ζσR,s|t,r: The standard deviation of the normal distribution for ages older than the peak age
(ζpeak,s|t,r). This side of the selection curve is referred to as the right side or descending limb.
To create an asymptotic selectivity ogive with the double normal this parameter would be
fixed at a sufficiently large value.

4. ζmax,s|t,r: The probability at the age associated with the peak. This must be set at 1.0 for
one of the sexes, but may be less than 1.0 for the other sex.

5. ζfinal,s|t,r: The lowest value of the function on the right side of the function. The probability
for ages that would be calculated less than this value are fixed at this value.

Figure 2.3: Examples of the logistic and double-normal parameterizations for selectivity.

The availability of fish to a sector changes from year to year and changes may be made to gear
for efficiency or to meet changes in regulation. Therefore, selectivity likely varies over time, hence
the time subscript on the parameters and selectivity-at-age. Time-varying selectivity-at-age can
be implemented by adjusting the parameters across time according to the methods described in
section 2.3.9.

Specific terms are used to refer to fishery related quantities. Landings are the fish that are landed
and quantified. These include commercial landings of O32 Pacific halibut at processing plants and
Pacific halibut kept in the recreational fishery. Captured fish refers to fish that are captured by
fishing gear, of which some may subsequently survive if released. Some sources may refer to that as
catch, but the term catch in this document is synonymous with landings. Of the captured
fish that are subsequently released, some may die; this is called discard mortality. The sum of catch
(i.e., landings) and discard mortality is the total fishing mortality. To model total fishing mortality
an exploitation rate, selectivity curve, and retention curve are needed.

Retention-at-age represents the probability that a captured fish is retained. This curve typically
increases from lower probabilities at younger ages and nearing one at older ages, but often does not
reach exactly one at its peak to represent the occasional discarding or loss of older/larger fish in
that fishery. Low retention of young fish may represnet a minimum size limit or high-grading for
larger/older fish. Low retentions of older fish may represent a maximum size limit or high-grading
for smaller/younger fish. It is important to use retention because it can be used to calculate the
proportion of fish-at-age that are released and may suffer discard mortality.
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Retention is parameterized using the same options as selectivity (direct input by age, logistic, or
double-normal) The retention parameters are

1. ηa50,s|t,r: The age at which the probability of retention is 50% for sex s, at time t, for sector
f .

2. ηa95,s|t,r: The age at which the probability of retention is 95% for sex s, at time t, for sector
f .

3. ηmax,s|t,r: The asymptote or maximum probability of retention at any age (ranges from 0 to
1).

There are five parameters in the double normal function for selectivity and one optional parameter.

1. ηpeak,s|t,r: (Required) The age at which the probability of retention is at its maximum for sex
s, at time t, for sector f .

2. ησL,s|t,r: (Required) The standard deviation of the normal distribution for ages younger than
the peak age (ηpeak,s|t,r). This side of the retention curve is referred to as the left side or
ascending limb.

3. ησR,s|t,r: (Required) The standard deviation of the normal distribution for ages older than
the peak age (ηpeak,s|t,r). This side of the retention curve is referred to as the right side
or descending limb. To create an asymptotic retention ogive with the double normal this
parameter would be fixed at a sufficiently large value.

4. ηmax,s|t,r: The asymptote or maximum probability of retention at any age (ranges from 0 to
1).

5. ηfinal,s|t,r: The lowest value of the function on the right side of the function. The probability
for ages that would be calculated less than this value are fixed at this value.

The logistic function for retention is

(2.18) Ra,s|t,r,f =
ηmax,s|t,r

1 + 19
(ηa50,s|t,r,f−age)/(ηa50,s|t,r,f−ηa95,s|t,r,f )

and the double-normal function for retention is

(2.19) Ra,s|t,r,f =


ηmax,s|t,r,f

e
−(a−ηpeak,s|t,r,f )

2

2ησL,s|t,r,f
age < ηpeak,s|t,r,f

Max

[
ηmax,s|t,r,f

e
−(a−ηpeak,s|t,r,f )

2

2ησR,s|t,r,f
, ηfinal,s|t,r,f

]
age ≥ ηpeak,s|t,r,f

It is important to not confuse retention with selectivity. For fisheries that retain all fish, the re-
tention curve would be one across all ages because selectivity accounts for the sector not catching
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younger fish. The resulting product of retention and selectivity is called the keep curve and repre-
sents the probabilities-at-age of fish that are captured and retained, thus kept and landed. Figure
2.4 shows examples of selectivity and retention curves, and the resulting keep curve.

Figure 2.4: Examples of the double-normal parameterization for selectivity, a logistic parameterization
for retention, and the resulting keep curve.

The sectors are assumed to operate at a very specific point of time defined as the proportion of the
time-step (pf ). Some sectors will operate before others and will affect the abundance available later
in the time-step. Therefore, the sequential operation of the sectors is accounted for by applying
the probability that a fish survives sectors that occurred previously (catch and discard mortality).
This necessitates determining only those sectors that occurred before the sector of interest.

Catch at age and sex in numbers (Cn) or weight (C) for a sector in an area can be determined
from the numbers-at-age (Na), natural mortality rate (M), exploitation rate (Uf ), selectivity (S),
proportion that are subsequently retained (R), mean weight-at-age (W ), and the mortality from
fisheries that occurred before the sector of interest. Appendix B presents details of this method as
well as a method that does not take the sequence into account.

We notate the numbers-at-age and the biomass-at-age at a particular point in time in a time-step
as Np

a,s|t,r and Bp
a,s|t,r, respectively, where the superscript indicates the proportion of the time-step.

Given this notation, the catch for a particular sector is

Cna,s|t,r,f = Np
a,s|t,rU|t,r,fSa,s|t,r,fRa,s|t,r,f

Ca,s|t,r,f = Np
a,s|t,rWa,s,|t,r,fU|t,r,fSa,s|t,r,fRa,s|t,r,f

and the total catch for a sector is

Cn|t,r,f =
A∑
a=0

∑
s

Cna,s|t,r,f(2.20)

C|t,r,f =

A∑
a=0

∑
s

Ca,s|t,r,f = U|t,r,fB
sr,p
|t,r,f(2.21)

where Bsr,p
|t,r,f is the selected and retained biomass for sector f , and will be discussed later.
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Discarded fish-at-age (fish caught but not retained) that suffer mortality after release (discard
mortality) are an additional source of fishing mortality not accounted for in the retained catch.
Discard mortality is calculated as

Dn
a,s|t,r,f = Np

a,s|t,rU|t,r,fSa,s|t,r,f
(
1−Ra,s|t,r,f

)
da,s|t,r,f

Da,s|t,r,f = Np
a,s|t,rWa,s,|t,r,fU|t,r,fSa,s|t,r,f

(
1−Ra,s|t,r,f

)
da,s|t,r,f

where da,s|t,r,f is the discard mortality rate (DMR) and (1−Ry,a,s,f ) dy,a,s,r,f is the proportion of
selected fish that are released and do not survive. The summation of catch (C|t,r,f ) and discarded
fish that die (D|t,r,f ) is the total mortality for sector f .

TM|t,r,f = C|t,r,f +D|t,r,f(2.22)

When modelling multiple fisheries occurring at different times, the calculation of Np incorporates
the mortality from fisheries that occurred previous to the sector of interest. The code may divide a
time-step into sub-time-steps, but a more efficient method can be done using the probability that
a fish survives an earlier sector in that time-step. The reader is referred to Appendix B for the
details. The catch for a sector is

Cna,s|t,r,f = Na,s|t,re
−pfMa,s|t,r ×(2.23) ∏

i∈pj<pf

{
1− U|t,r,iSa,s|t,r,i

[
Ra,s|t,r,i + (1−Ra,s|t,r,i)da,s|t,r,i

]}
×

U|t,r,fSa,s|t,r,fRa,s|t,r,f

Ca,s|t,r,f = Cna,s|t,r,fWa,s|t,r(2.24)

where

Np
a,s|t,r = Na,s|t,re

−pfMa,s|t,r
∏

i∈pj<pf

{
1− U|t,r,iSa,s|t,r,i

[
Ra,s|t,r,i + (1−Ra,s|t,r,i)da,s|t,r,i

]}
and incorporates the product of the probabilities-at-age of surviving fisheries that occurred prior
to the sector of interest (f). The total predicted catch for a sector in a region is shown in equation
B.3.

Discarded fish-at-age (fish caught but not retained) that suffer mortality after release (discard
mortality) is calculated in a similar manner.

Dn
a,s|t,r,f = Na,s|t,re

−pfMa,s|t,r ×(2.25) ∏
i∈pj<pf

{
1− U|t,r,iSa,s|t,r,i

[
Ra,s|t,r,i + (1−Ra,s|t,r,i)da,s|t,r,i

]}
×

U|t,r,fSa,s|t,r,f
(
1−Ra,s|t,r,f

)
da,s|t,r,f

Da,s|t,r,f = Dn
a,s|t,r,fWa,s|t,r,f(2.26)

where da,s|t,r,f is the discard mortality rate (DMR) and (1−Ry,a,s,f ) dy,a,s,r,f is the proportion of
selected fish that are released and do not survive. The summation of catch (C|t,r,f ) and discarded
fish that die (D|t,r,f ) is the total mortality for sector f (equation 2.22) and can be written as
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TMn
|t,r,f =

A∑
a=0

∑
s

Na,s|t,re
−pfMa,s|t,r ×(2.27) ∏

i∈pj<pf

{
1− U|t,r,iSa,s|t,r,i

[
Ra,s|t,r,i + (1−Ra,s|t,r,i)da,s|t,r,i

]}
×

Sa,s|t,r,f
[
Ra,s|t,r,f +

(
1−Ra,s|t,r,f

)
da,s|t,r,f

]
TMt,r,f =

A∑
a=0

∑
s

Na,s|t,re
−pfMa,s|t,r ×(2.28) ∏

i∈pj<pf

{
1− U|t,r,iSa,s|t,r,i

[
Ra,s|t,r,i + (1−Ra,s|t,r,i)da,s|t,r,i

]}
×

Sa,s|t,r,f
[
Ra,s|t,r,f +

(
1−Ra,s|t,r,f

)
da,s|t,r,f

]
Wa,s|t,r,f

The selected-and-retained biomass for sector f in the population is simply the catch divided by the
exploitation rate, but catch is an input and selected-at-retained biomass must be calculated from
selectivity (S), proportion retained (R), and mean weight-at-age (W ) to determine the exploitation
rate Uf (equation B.11).

Bsr,p
|t,r,f =

Ca,s|t,r,f

U|t,r,f
(2.29)

=

A∑
a=0

∑
s

Na,s|t,re
−pfMa,s|t,r ×∏

i∈pj<pf

{
1− U|t,r,iSa,s|t,r,i

[
Ra,s|t,r,i + (1−Ra,s|t,r,i)da,s|t,r,i

]}
×

Sa,s|t,r,fRa,s|t,r,fWa,s|t,r,f

Therefore, natural and fishing mortality can be accounted for simultaneously, and the numbers-at-
age in the next time-step, accounting for all mortality, are

N
′′

a,s|t,r = N
′

a,s|t,re
−Ma,s|t,r

∏
f

{
1− U|t,r,iSa,s|t,r,i

[
Ra,s|t,r,i + (1−Ra,s|t,r,i)da,s|t,r,i

]}
(2.30)

See Appendix B for details.

The exploitation rate is defined to be between zero and one, but it is possible that the explotation
rate may exceed one if the calculated exploitable biomass is less than the fixed input catch for a
sector. If the exploitation rate for a specific sector exceeds 1, a negative population size may occur.
Therefore, a maximum exploitation rate (Umax) must be specified, which is realistically less than
one. If the exploitation rate for a sector exceeds the defined maximum, the exploitation rate for
that sector should be set to the defined maximum. When this adjustment occurs, the predicted
catch will be different than the input catch, and a penalty should be applied since catches are
considered observed inputs (not data with error). This penalty will be discussed in a later section
on conditioning.
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2.3.5 Maturity

Maturity and spawning may be separated into two separate states with maturity being a part of
the state object, and the numbers of mature fish specifically tracked as part of the state. However,
this operating model does not partition maturity in the state, but instead simply determines the
numbers of mature fish from mature proportions-at-age (called the maturity curve).

Nma
a,s|t,r = N

′′

a,s|t,rΩa,s|t,r(2.31)

Maturity functional forms and parameters

The maturity curve (Ω) may be an empirical vector of proportions input by the user from externally
estimated data. Alternatively, the vector or proportions may be determined from a functional form,
such as a logistic equation, with appropriate parameters defined.

(2.32) Ωa,s|t,r =
ωmax,s|t,r

1 + 19
(ωa50,s|t,r−age)/(ωa95,s|t,r−ωa50,s|t,r)

There are three parameters in this asymmetric logistic function.

1. ωmax,s|t,r: The asymptote or maximum proportion mature at any age (ranges from 0 to 1).

2. ωa50,s|t,r: The age at which the proportion mature equals 50% of the asymptote for sex s, at
time t, and in region r.

3. ωa95,s|t,r: The age at which the proportion mature is 95% of the asymptote for sex s, at time
t, and in region r. Must be greater than ωa50,s|t,r.

2.3.6 Spawning biomass

The number of spawning individuals is the number that are mature at age times the proportion
spawning at age. This allows for the accounting of individuals that are mature (able to produce
gametes) but are not actively spawning in that time-step (e.g., skip spawning), and those that are
mature and actively spawning in that time-step.

N sp
a,s|t,r = Nma

a,s|t,rΦa,s|t,r(2.33)

The spawning biomass (Bsp) is calculated as follows.

Bsp
|t,r =

A∑
a=0

∑
s

N sp
a,s|t,rW

1
a,s|t,r(2.34)

whereW 1
a,s|t,r is the weight-at-age for that age, sex, time-step, and region at the end of the time-step.
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Most sex-specific stock assessments account for only the female spawning biomass, which would
simply be

Bsp
s=1|t,r =

A∑
a=0

N sp
a,s=1|t,rW

1
a,s=1|t,r(2.35)

Spawning proportion parameters

The proportions spawning (Φ) is a vector of proportions-at-age input by the user from externally
estimated data. Typically, this vector contains a value of 1 for all ages because there is currently
a paucity of information for many fish stocks.

2.3.7 Size-at-age

Growth is not modelled specifically (e.g, length-at-age), but weight-at-age is used to calculate
biomass-at-age from numbers-at-age. Mean weight-at-age, sex, and region for a particular time-step
and sector (Wa,s|t,r,f , which will simply be referred to as weight-at-age regardless of the various
partitions), is input by the user. Sector-specific weight-at-age are used because selectivity may
operate on the larger fish of a certain age, resulting in a larger weight-at-age than in the population.

Projecting variability in weight-at-age is discussed in Section 2.5.

2.3.8 Initial population

The initial population is the partitioned population numbers at the start of the first modelled
time-step, and is based on unfished equilibrium recruitment (R0) with three potential adjustments.

1. An overall adjustment (eδ|I ) that changes R0 (i.e., the overall scale of recruitment) and could
mimic a different regime that influenced the initial population.

2. Cohort (a) specific adjustments to account for recruitment variability (εa|I).

3. Adjustments by age to account for an average level of fishing that occurred before the initial
time-step:

∏
f

{
1− U|t,r,fSa,s|t,r,f

[
Ra,s|t,r,f + (1−Ra,s|t,r,f )da,s|t,r,f

]}
.

Calculating the initial equilibrium population size is not a simple calculation when region is in
the partition and initial recruitment deviations are used. It is easiest to build up the population
sequentially by each cohort that makes up the initial population using the sequence of processes
described in Section 2.3: recruitment, movement, and mortality. This will be time-consuming, but
only has to be done while an operating model is being conditioned.

The numbers at age 0 for the cohort that is age a in the initial time-step (I) for each sex and region
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is

N0,s|I−a,r =(2.36)

ps pa|I,r e
δ|IR0 e

(
εa|I−

σ2R
2

)∏
f

{
1− U|I,r,fS0,s|I,r,f

[
R0,s|I,r,f + (1−R0,s|I,r,f )d0,s|I,r,f

]}
where ps is the proportion of sex s at birth (

∑
s ps = 1) and pa|I,r is the proportion of cohort

a recruiting to region r in the initial time-step (
∑

r p|I,a,r = 1). It is assumed that there is a
single selectivity curve for the initial time period that applies equally to all cohorts and a constant
exploitation rate for all cohorts over their life-span before the initial time-step.

Equation 2.36 calculates the number for each cohort when they were age 0 prior to the initial time-
step. To calculate the numbers-at-age in the initial time-step, the annual process for each cohort is
iterated up to the age that each cohort would be in the initial time-step. For example, to calculate
the cohort that is age 3 in the initial population, Equation 2.36 would first determine the number
of that cohort that were born into the population three time-steps prior. Then, the population
dynamics would apply to that cohort for three iterations (0 to 1, 1 to 2, and 2 to 3) to determine
the numbers in that cohort at age 3 in the initial time-step. Therefore, the annual process for the
cohort that is age a in the initial time-step is iterated from i = a . . . 1 in the following equations.
It begins by incrementing the annual process.

Na−i+1,s|I−i+1,r = Na−i,s|I−i,r(2.37)

Then, movement from region j to k is applied. The subscripts for age, sex, and time-step are
dropped for clarity in the derivation below, but are noted in the final equation. Also note that the
movement-at-age, Psi, does not change in time-steps prior to the initial time-step.

N
′

a−i+1,s|I−i+1,j = N|j −N|j
∑
k 6=j

Ψ|j→k +
∑
k 6=j

N|kΨ|k→j

= N|j

1−
∑
k 6=j

Ψ|j→k

+
∑
k 6=j

N|kΨ|k→j

= N|jΨ|j→j +
∑
k 6=j

N|kΨ|k→j

=
∑
k∈r

Na−i+1,s|I−i+1,kΨa−i+1,s|I,k→j(2.38)

Finally, natural and fishing mortality is applied. Subscripts for age, sex, and time-step are dropped
for clarity, but are the same as in the left side of the equation unless indicated (e.g., M , U , S, R,
and d).

N
′′

a−i+1,s|I−i+1,r = N
′

|re
(−M|I,r)

∏
f

{
1− U|I,r,fS|I,r,f

[
R|I,r,f + (1−R|I,r,f )d|I,r,f

]}
(2.39)

Graphically, the process will look like:

27 of 54



MSE framework, DRAFT October 18, 2020 IPHC-2020-MSAB016-INF01

I − 5 I − 4 I − 3 I − 2 I − 1 I

coh5a=0 coh4a=0 coh3a=0 coh2a=0 coh1a=0 coh0a=0

coh1a=1

coh2a=2

coh3a=3

coh4a=4

coh5a=5

coh5a=1

coh5a=2

coh5a=3

coh5a=4

· · · · · ·

· · ·

· · ·

· · · · · ·

Sel

S0

S1

S2

S3

S4

S5

Ut=I−{5...0}

Table 2.3

Years before Initial
. . . I-5 I-4 I-3 I-2 I-1 I

C
o
h

or
t

coh0a=0

coh1a=0 coh1a=1

coh2a=0 coh2a=1 coh2a=2

coh3a=0 coh3a=1 coh3a=2 coh3a=3

coh4a=0 coh4a=1 coh4a=2 coh4a=3 coh4a=4

coh5a=0 coh5a=1 coh5a=2 coh5a=3 coh5a=4 coh5a=5

. . . . . . . . . . . . . . . . . . . . .

Summary of initial population numbers

To summarize how the initial numbers in the partitions are completed, psuedo code is provided
below.

1. Determine the inital number of age zero (i = 0) fish for the cohort (“coh” in the schematic
representation above) of age a from Equation 2.36, where a = 0, 1, 2, . . . , nA. The n is a
multiplier on the plus group age A to simulate beyond the plus group to ensure the dynamics
of the plus group are correct.
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2. Loop over a = 1, 2, . . . , nA. For each a,

(a) loop over i = a, a− 1, . . . , 2, 1 applying Equations 2.37, 2.38, and 2.39 to build up the
initial numbers for each cohort at age a.

3. sum numbers over a = A,A+ 1, . . . , nA to create the plus group (A).

A value of 3 is typically used for n, but it depends on the plus group age and the time willing to
spend iterating over ages.

Calculation of other initial population values

Initial spawning biomass is calculated after the initial numbers-at-age are completed.

Bsp
|I,r =

A∑
a=0

∑
s

N
′′

a,s|I,rΩa,s|I,rΦa,s|I,rW
1
y,a,s,r(2.40)

Population Dynamics

The sequence

1. age increment,

2. spawning (or may occur at end),

3. recruitment,

4. movement,

5. mortality, and

6. spawning (or may occur at beginning).

The notation

N : Beginning of the time-step after age increment and recruitment.

N
′

: After movement before mortality

N
′′

: End of the time-step, after natural and fishing mortality

The equations

Ny,a,s,r,m =

Rs|t,r a = 0

Na−1,s|t−1,r 1 ≤ a < A

Na−1,s|t−1,r +Na,s|t−1,r a = A

N
′

a,s|t,r =
∑
k∈r

Na,s|t,kΨa,s|t,k→r

N
′′

a,s|t,r = N
′

a,s|t,re
−Ma,s|t,r

∏
f

{
1− U|I,r,fS|I,r,f

[
R|I,r,f + (1−R|I,r,f )d|I,r,f

]}
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2.3.9 Parameter evolution through time

A description of deviations applied to parameters.

2.4 Conditioning the Operating Models

2.4.1 Observations and Data

The current assessment used eight categories of observations and data in the modelling and fit-
ting process (IPHC-2020-SA-01, https://iphc.int/uploads/pdf/sa/2020/iphc-2020-sa-01.pdf). A
detailed description of the various data used in the stock assessment and related data sets are
provided in IPHC-2020-SA-02 (https://iphc.int/uploads/pdf/sa/2020/iphc-2020-sa-02.pdf). Be-
low is a description of the categories of data/observations and what may be available for use in
conditioning the multi-area operating model, including data that may not currently be used in the
stock assessment.

Fishing mortality

The mortality of Pacific halibut due to fishing (i.e., landings and discard mortality) are not treated
as data in the stock assessment because they are entered as fixed, known values without error
(empirical observations). Fishing mortality is a very important driver of the population dynamics.

Sectors

FISS Indices

These data are an annual relative index of abundance or biomass. They represent changes in abun-
dance or biomass from year to year, but do not represent the absolute scale. Fishery-Independent
Setline Survey (FISS) numbers-per-unit-effort (NPUE), survey weight-per-unit-effort (WPUE), and
fishery catch-per-unit-effort in weight (CPUE) are available for Pacific halibut. The survey index
in numbers-per-unit-effort (NPUE) is available coastwide, by Biological Region, or by IPHC Reg-
ulatory Area.

FISS Age Compositions

These data are the numbers-at-age of Pacific halibut (commonly in proportions) in the survey
catches and fishery catches. Survey observations are available for each sex and two years of separate
sex data are currently available for fishery landings (2017 and 2018). Differences in sex ratios inform
differences in selectivity, availability, and potentially movement between areas.
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Fishery CPUE

These data are an annual relative index of abundance or biomass. They represent changes in abun-
dance or biomass from year to year, but do not represent the absolute scale. Fishery-Independent
Setline Survey (FISS) numbers-per-unit-effort (NPUE), survey weight-per-unit-effort (WPUE), and
fishery catch-per-unit-effort in weight (CPUE) are available for Pacific halibut.

Fishery Age Compositions

These data are the numbers-at-age of Pacific halibut (commonly in proportions) in the survey
catches and fishery catches. Survey observations are available for each sex and two years of separate
sex data are currently available for fishery landings (2017 and 2018). Differences in sex ratios inform
differences in selectivity, availability, and potentially movement between areas.

Weight-at-age

These data are the weight-at-age of Pacific halibut observed from various sources and are com-
monly summarized as the average weight-at-age. They are entered as empirical data in the stock
assessment and are not involved in the fitting process.

Maturity-at-age

There are limited data on maturity-at-age for Pacific halibut and a single ogive representing the
probability of being mature at each age is used to calculate fecundity and entered as empirical data.

Environmental Observations

The Pacific halibut stock assessment uses an index linked to average recruitment (high or low) that
is developed from the Pacific Decadal Oscillation (PDO).

Additional environmental observatiosn may be useful to condition the multi-area operating model.
These may be ocean temperatures or prey abundance, for example.

Other Surveys

There are many other surveys that catch Pacific halibut, including NMFS trawl and longline sur-
veys. These data may inform abundances of various cohorts in specific areas.
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Lengths

Length data are not used in the age-structured stock assessment model but more samples are
available coastwide than age data. They may be useful to investigate differences between areas.

Stock distribution

The stock distribution estimated from FISS data are available by IPHC Regulatory Area and by
Biological Region. Changes in this distribution over time may indicate differences in fishing pressure
between areas and may also inform movement.

Tag returns

Tagging data are useful to inform movement, migration, and mortality. There are many years of
tag releases and returns for Pacific halibut, which are mostly informative of movement between
specific areas. The synthesis of this information over amny years can provide an insight into the
movement of Pacific halibut.

2.4.2 Predictions from the stock assessment

The stock assessment integrates various data sources to predict population quantities as well as
uncertainty in those quantities. Four inidividual models are combined in an ensemble to account for
structural and parameter uncertainty. Two of the individual models incorporate a short time-series
starting in 1993, thus only predictions from 1993 onward can be supplied by the ensemble.

2.5 Projecting the Operating Models

2.5.1 Recruitment

See IPHC-2018-MSAB012-07. Discuss regimes, PDO, and recruitment variability.

2.5.2 Fishing mortality

Based on the management procedure. Mimic catch sharing plans by IPHC Regulatory Area to
determine allocation across sectors. Selectivity deviations for commercial fishery and survey.

2.5.3 Movement

Annual variability in movement yet to be determined.
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2.5.4 Weight-at-age

Projected values of weight-at-age are modelled using a random walk to introduce inter-annual
variability. Done by region with some synchrony.

2.6 Reference Points

Unfished, equilibrium spawning biomass at the start of the year was found using weight-at-age,
maturity-at-age, natural mortality, and unfished, equilibrium recruitment (R0).

B0 = R0

[
A−1∑
a=1

e−M(a−1)wama +
e−M(A−1)wAmA

1− e−M

]
(2.41)

Unfished equilibrium spawning biomass (i.e., B0) requires the definition of many parameters (e.g.,
weight-at-age) that are likely time-varying, thus the spawning biomass will fluctuate without fishing.
Therefore, dynamic calculations of unfished equilibrium spawning biomass are calculated using
information from recent years. This is a measure of the stock size if fishing had not occurred and is
useful to calculate a stock status that is reflective of the effect of fishing and not the environment.

Dynamic unfished quantities are calculated by simulating a ‘shadow’ state alongside the fished
state. All parameters (including deviations) are the same, except that the ‘shadow’ state does not
have any fishing mortality. The additional processing time is minimal because the ‘shadow’ state is
entirely processed in memory with almost negligible additional reading or writing to disk and the
fishing processes are not called, which are typically a large part of the processing time.

The calculation of Total Mortality based on SPR...
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Chapter 3

Specifications for the Pacific halibut
MSE framework

The Management Strategy Evaluation for Pacific halibut is currently being used to investigate
management procedures to set the coastwide mortality limit (coastwide scale) and determine catch
limits for each IPHC Regulatory Area (distribution of mortality limits, Figure 3.1). This requires
a multi-area operating model with fleets represented within IPHC Regulatory Areas. The specifi-
cations for this MSE are provided below.

Figure 3.1: IPHC Regulatory Areas (grey shaded areas) and Biological Regions (colored circles).

There are many parameters that make up the Operating Model including population parameters
and fishery parameters. Some of the parameters are simply a set parameter that drives the popula-
tion, and are called input parameters. Derived parameters are calculated from parameters, inputs,
and outputs. An example is that natural mortality (M) is an input parameter that in combination
with other parameters results in the spawning biomass (a derived parameter). Parameters are
described below.
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3.1 Management Procedures

3.1.1 Data Generation

The OM provides outputs that can be used to generate data from the Pacific halibut stock. In
particular, for each year in the simulation the model provides numbers-at-age in the stock by sex
and region, numbers-at-age in the catch by sex, region and fishery sector, numbers-at-age available
to each fishery at a specific point in time, selectivity-at-age by fishery sector, and weight-at-age by
sex, region and fishery sector. From these outputs it would be possible to obtain all the inputs
currently used in the stock assessment. To maintain consistency between the various elements
needed by the Estimation Model (EM) and with the way data are collected in reality, all quantities
are first generated at an IPHC Regulatory Area level and then aggregated to a coastwide level.

Coastwide total mortality The total mortality (TM) for a fishery is set equal to the TCEY
resulting from the application of the harvest control rule, but may be modified in the OM to account
for implementation error. Therefore, the coastwide total mortality required by the assessment is
obtained by summing the total mortality from each fishery.

Proportion at age in the catch and in the survey. Proportion-at-age in the catch by fishery
sector are derived from the numbers-at-age available to each fishery sector at a specific point in time
times the selectivity-at-age for each specific fishery sector. From this exploitable abundance-at-age
the proportions-at-age are calculated.

pNAAa,s|t,r =
(Na,s|t,r × Sa,s|t,f )

A∑
a=0

Na,s|t,r

(3.1)

where Na,s|t,r are the numbers-at-age in the population available to a specific fishery sector f ,
Sa,s|t,f is the selectivity by age and sex for each year and fishery sector f . Observation error is
implemented by means of a Dirichlet distribution, using a sample size (3.1.1) as scale parameter.
The generated proportion-at-age by fishery sector are then multiplied by the fishery sector total
mortality in number, to calculate catch-at-age in numbers per each fishery sector. These catch-at-
age are aggregated to a coastwide level, and the proportions-at-age by sector are re-calculated to
be used in the EM.

Sample size The number of fish aged for each fishery (sample size) is used as the scale parameter
for the Dirchlet distribution. The total coastwide number of fish aged in a specific year is also an
input of the estimation model. Two options are suggested for the calculation of the sample size:

1. the sample size by Biological Region is generated from the sample size by Biological Region
used in the long coastwide assessment model: in particular, the sample size is randomly drawn
from the sample size available historically for each fishery sector.
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2. the sample size by Biological Region is generated directly using a fixed proportion of the total
mortality by fishery sector or total abundance by Biological Region:

• sample size for the directed commercial, non-directed commercial discard mortality,
recreational and subsistence sectors: for each sector, the sample size is calculated using
a fixed proportion of the total mortality by Biological Region and sector.

• sample size for survey and directed commercial discard mortality sectors: for each sector,
the sample size is calculated using a fixed proportion of the available numbers-at-age by
region.

The proportion chosen could be an average derived from observations on the historical data.

Survey NPUE and commercial WPUE. The Fishery Independent Setline Survey (FISS)
NPUE (Isurt,r ) and the commercial WPUE (Icommt,r ) are needed for the EM at a coastwide level, and
for the MP at a Biological Region or IPHC Regulatory Area level. The OM produce the numbers-
at-age available to the survey and the numbers-at-age available to the directed commercial sectors:
from these values, the exploitable abundance and biomass are calculated at a Biological Region
level. These are then multiplied by the catchability for each specific Biological Region.

Isurt,r = qsurt,r

A∑
a=0

Na,s|t,r,f × Sa,s|t,f(3.2)

Icommt,r = qcommt,r ×
A∑
a=0

Na,s|t,r,f × Sa,s|t,f ×Wa,s|t,f(3.3)

Some of the harvest control rules require the provision of the over 32 inches (O32) stock distribution
at biological region and regulatory area level. In this case, the numbers-at-age are multiplied by
the probability of each age to be 32 inches or bigger (see section ??):

Isurt,r = qsurt,r

A∑
a=0

Na,s|t,r,f ×O32proba,s × Sa,s|t,f(3.4)

(3.5)

Regional q is specified as a relative q by region (i.e. Biological Region 3 will have q = 1, and
the other regional q will be relative to this one) whose weighted mean (where the weight is the
survey bottom area and the commercial catch for the NPUE and WPUE respectively) will equal
the coastwide q. The proportion of each regional q relative to q in Biological Region 3 was arbitrarly
fixed to the average of the last 20 years (Fig 3.2)

To derive the indices at the IPHC Regulatory Area level, as required by some of the MPs, the
exploitable abundance and biomass are partitioned to each IPHC Regulatory Area using an average
of the historical stock distribution from the modelled FISS survey (Fig 3.3). The catchability is
assumed to be equal for each IPHC Regulatory Area in a Biological Region.

36 of 54



MSE framework, DRAFT October 18, 2020 IPHC-2020-MSAB016-INF01

Figure 3.2: Proportion of each regional q relative to Biological Region 3 for the commercial WPUE
(left) and the survey NPUE (right). The average of the years 2000 to 2019 is shown as a
dotted line.

Figure 3.3: Proportion of stock distribution in each IPHC Regulatory Area by Biological Region from
the modelled FISS survey. The 10 year average is shown as a dotted line.

In the base case the catchability coefficient is time invariant. Alternative scenarios will test a time
variant catchability parameter modeled as a random walk of the coastwide q or of the regional q as
a function of the abundance in each Biological Region.

The coastwide NPUE and WPUE will be calculated as the weighted average of the indices for each
Biological Region. The weights are the survey bottom area and the commercial catch for the NPUE
and WPUE, respectively.
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3.1.2 Modelling length-at-age

Fish have different lengths within age groups and this variability was modelled using probability dis-
tributions. The data used to inform the model are the length-at-age distribution resulting from the
long coastwide SS model used in the ensemble for Pacific halibut (section Biology at age in endyr with CV

of the report file). One-thousand randomly generated values with mean equal to the average length-
at-age-and standard deviation of length-at-age were drawn from a normal distribution for males
and females separately (Figure 3.4).

(a) Females (b) Males

Figure 3.4: Length distribution at ages 3 to 25 for females and males of Pacific halibut

For each age group, the proportion of fish within each lenght bin l for age a and gender s is equal
to:

(3.6) Φs,a,l =



Φ
L
′
min−L̃s,a
σs,a

l = 1

Φ
L
′
l+1−L̃s,a
σs,a

− Φ
L
′
l−L̃s,a
σs,a

1 < l < Al

1− Φ
L
′
max−L̃s,a
σs,a

l = Al

where Φ is the standard normal cumulative density function, L
′
l is the lower limit of the smallest

bin, L
′
l is the lower limit of the length bin l, L

′
max is the lower limit of the largest bin.

The proportion of fish in each age class above 32 inches are then summed up (Fig 3.5).

3.1.3 Estimation Model

To simulate estimation error of management quantities an ensemble of estimation models is used,
which is analogous to the stock assessment. This approach uses the data generated with error from
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Figure 3.5: Proportion of fish above 32 inches by sex

the OM and then estimates management quantities using two estimation models to mimic the stock
assessment ensemble. This approach aims at capturing the correlated error and potential biases in
the estimated management quantities.

The estimation model chosen for Pacific halibut uses two stock synthesis (v. 3.30.13) models
mimicking the short coastwide and long coastwide models in the stock assessment. This approach
aims at capturing the correlated error and potential biases in the estimated management quantities.
The two stock synthesis models are averaged to represent a simplified version of the stock assessment
ensemble currently used for Pacific halibut. The coastwide models (long and short coastwide) were
chosen from the four currently used in the stock assessment ensemble and were streamlined to
increase efficiency and to reduce the time of the MSE simulations, yet retain the complexity and
uncertainty captured by the full stock assessment ensemble. The short and long coastwide models
represent the uncertainty in natural mortality rates (estimated in the long time-series but fixed for
females in the short time-series), the environmental effect on recruitment (estimated only in the
long time-series), as well as other structural and parameter assumptions.

The streamlining of the coastwide models consisted of:

• Reducing the amount of data included (e.g. fewer years with age composition, long coastwide
model starting from 1935, etc.)

• Using the optimized version of stock Synthesis (SS 3.30.13)

• Fixing annual deviations in selectivity parameters for the historical time series, and estimate
only the deviations for the most recent 10 years.
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• Using the ss.par file from the original assessment model for the starting parameters values

To speed up the estimation time, the hessian is not estimated, the estimation of parameters start
after the last phase (so all parameters are estimated at the same time), and screen outputs are
reduced to a minimum.

See IPHC-2020-SRB-08 for more description.

3.1.4 Harvest Rule

The harvest rule is the defined procedure that uses outputs from data generation and the estimation
models to determine mortality limits for each fishery. Currently, this uses a fishing mortality rate
based on SPR, a control rule to reduce the fishing intensity below specified stock sizes, and a
distribution procedure to distribute the coastwide TCEY to each IPHC Regulatory Areas and then
to each fishery. Different specifications of the harvest rule are the main focus for investigation of
management procedures for Pacific halibut.

3.2 Population structure

To simulate the distribution of mortality and determine how management procedures meet objec-
tives specific to IPHC Regulatory Areas and fisheries, the operating model will have to include
multiple regions with migration between them. Biological Regions (Figure 3.1) have been defined
based on current knowledge of movement as well as biological understanding. A Biological Region
is larger than an IPHC Regulatory Area (Figure 3.1), but fisheries operate at the level of the IPHC
Regulatory Area or finer. Movement will not be specifically modelled between areas within a region,
but movement will always be modelled between regions. Even though the computer program for the
operating model allows flexibility to define any arrangement of regions and areas, with movement
modelled between Biological Regions, it would be moot to model movement within a Biological
Region on an annual time-step because it is assumed that a fish may be anywhere within the region
within a year. The modelling of fisheries in separate areas is described below. Additionally, the
detailed understanding of movement within a Biological Region is not well understood and would
be difficult to parameterize.

3.2.1 Input population parameters

3.2.2 Derived population parameters

3.3 Structure of the fisheries

The annual mortality limits determined for various fishery sectors occur at the level of IPHC
Regulatory Areas (Figure 3.1). However, some fisheries for Pacific halibut may operate at a finer
scale than an IPHC Regulatory Area. The best definition of fishery areas was determined from the
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objectives defined for the MSE, input from stakeholders, as well as the availability of knowledge
to parameterize the fisheries for simulation, which is likely at the IPHC Regulatory Area level.
This can be done when modelling the population at larger Biological Regions by defining separate
sectors within a region, and using separate selectivity curves and exploitation rates to account for
the availability of Pacific halibut to a particular sector (see Section ??). This assumes that each
fishery within a Biological Region operates on the same pool of fish, but each fishery encounters
those fish differently.

See IPHC-2020-SRB016-08 for a description of the fisheries included in the OM.

3.3.1 Fishery parameters

Parameters for each fishery were determined from the 2019 long AAF assessment model. Selectivity
for the directed commercial and survey fisheries were made asymptotic because movement should
account for at least some of the differences in availability between Biological Regions.
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Appendix A

Parameters and notation

Table A.1: Dimension and partition notation in the operating models (used as subscripts).

Parameter Description

y Year.

a Age. A capital A indicates the maximum age.

s Sex, which includes female, male, and unsexed, in that order, labeled 1, 2, and 3.

r Region with movement occurring between regions.

rl Area within region. Movement is not modelled between areas.

im Immature state of the maturity partition.

ma Mature state of the maturity partition.

sp Spawning state calculated from the maturity partition. Note that this is not a specific

partition in the state object.

f Fishery sector.

I Initial, meaning the starting time-step.
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Table A.2: Parameters in the operating models.

Parameter Description

Population dynamics parameters

Ny,a,s,r,m Numbers for year, age, sex, region, and maturity

B0 Unfished equilibrium biomass

R0 Unfished equilibrium recruitment

By,a,s,r,m Biomass at the beginning of year y (and possibly other partitions as noted)

BMy,a,s,r,m Mature biomass at the beginning of year y

BSy,a,s,r,m Spawning biomass at the beginning of year y

BRy,r,f Biomass selected and retained by sector f in year y

My,a,s,r Natural mortality

Wy,a,s,r Mean weight-at-age in year y (and possibly other partitions)

Ω Proportion of mature individual at age, or the proportion transitioning from immature to

mature at age, depending on partioning maturity in the state object.

Φ Proportion of spawning individuals at age

Ψj→k Movement rate from area j to area k

ρ1 Parameter for Type II functional response of movement from area 1 to area 2

ρ2 Parameter for Type II functional response of movement from area 1 to area 2

ps Proportion of females at birth.

py,r Proportion of recruitment in region r in year y. Sums to one over regions.

pf Proportion of natural mortality that occurs before exploitation from sector f occurs.
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Table A.2 continued.

Parameter Description

Fishing mortality related parameters

Cy,a,s,r,f Catch (in weight) for year, age, sex, region, and sector. Catch summed over age and sex

(Cy,r,f ) is typically an input to the model.

CNy,a,s,r,f Catch (in numbers) for year, region, and sector.

Uy,r,f Exploitation rate for sector f

Sa,f Selectivity-at-age for sector f

Ra,f Proportion retained-at-age for sector f

Survey parameters

Zj Survey index for year j

q Survey catchability

τj Error in year j for the survey series

σ2
τj Total variability of the survey in year j

CPUE parameters

Uu,i CPUE for year i

α Multiplier in relationship between CPUE and abundance for the CPUE series

β Nonlinearity parameter in relationship between CPUE and abundance

νi Error in year i for CPUE series

σ2
νi Total variability of the CPUE series in year i
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Appendix B

Fishing mortality using exploitation

rates: two approaches

This appendix presents two methods to determine catch and exploitation rates when modelling the

fisheries with an exploitation rate (finite or Pope’s approximation) instead of the instantaneous

formulation (i.e. Baranov equation). The benefit of using an exploitation rate is that the code does

not have to iterate to find the fishing mortality rate (i.e., there is not closed-form solution for the

Baranov formulation). This will speed up the simulation time.

These equations have been simplified to show the concept. For example, retention and discard

mortality are not considered, and sex and region subscripts have been ommitted. The subscripts

remaining are a for age, t for time-step, and f for fleet/fishery. Superscripts are used to indicate

specific about the quantity, such as n for numbers and sr for selected-retained (i.e., exploitable by

a particular fleet), as well as the timing within the time-step (e.g., 0.25 would be one-quarter of

the natural mortality in that time-step occurred).

B.1 Fisheries are independent and do not effect each other

To make things simpler, in a sense, we may make the assumption that the fisheries are independent

of each other or they occur at exactly the same time. That means that the sequential nature of the

fisheries does not have to be tracked, making the equations and accounting simpler. However, an
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additional complication is introduced in making sure that the total exploitation rate (sum over all

fisheries) does not exceed a defined maximum (or a value of one).

Fishing mortality is parameterized with an exploitation rate and is assumed to occur at a specific

point in time after a proportion of the mortality (p|f ) has occurred. The proportion may be equal

for all fleets, and if not then it is assumed that the removals from a fleet operating before other

fleets does not affect the biomass available to subsequent fleets (may be OK with small exploitation

rates).

Catch at age and sex in numbers (Cn) or weight (C) for a sector in an area can be determined

from the exploitation rate (U), selectivity (S), and mean weight-at-age (W ). Note that retention

is not listed to simplify the examples shown here.

Cna|t,f = U|t,fNa|tSa|t,fe
−pfMa|t(B.1)

Ca|t,f = U|t,fNa|tSa|t,fWa|t,fe
−pfMa|t(B.2)

and the total predicted catch for a sector in a region is

Cn|t,f =

A∑
a=0

Cna|t,f(B.3)

C|t,f =

A∑
a=0

Ca|t,f = U|t,fB
sr,p
|t,f(B.4)

Natural and fishing mortality can be accounted for simultaneously, and the numbers-at-age in

the next time-step, after all mortality, can be simply determined with a single equation. Let’s

assume there are two fleets with the mortality from fleet 1 occurring after three fifths of the natural

mortality (p|1 = 0.6) and the mortality from fleet 2 occurring after one-quarter of the natural

mortality (p|2 = 0.25). The catch (in numbers) for each fleet is

Cna|t,f=1 = Na|tU|t,f=1Sa|t,f=1e
−0.6Ma(B.5)

Cna|t,f=2 = Na|tU|t,f=2Sa|t,f=2e
−0.25Ma(B.6)

The numbers-at-age in the next year, accounting for fishing mortality by removing the catch at the

appropriate time, is
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Na|t+1 =
[[
Nt,ae

−0.25Ma − CNa|f=2

]
e−(0.6−0.25)Ma − CNa|f=1

]
e−(1−0.6)Ma(B.7)

Converting the catch (Cn) to exploitation rates using equation B.5 and simplifying produces the

equation for N in the next time-step.

Na|t+1 =
[[
Nt,ae

−0.25Ma −Na|tU|t,f=2Sa|t,f=2e
−0.25Ma

]
e−(0.6−0.25)Ma−

Na|tU|t,f=1Sa|t,f=1e
−0.6Ma

]
e−(1−0.6)Ma

=
[
Nt,ae

−0.25Mae−0.35Ma(1− U|t,f=2Sa|t,f=2)−Na|tU|t,f=1Sa|t,f=1e
−0.6Ma

]
e−0.4Ma

=
[
Nt,ae

−0.6Ma(1− U|t,f=2Sa|t,f=2)−Na|tU|t,f=1Sa|t,f=1e
−0.6Ma

]
e−0.4Ma

=
[
Nt,ae

−0.6Ma(1− U|t,f=2Sa|t,f=2 − U|t,f=1Sa|t,f=1)
]
e−0.4Ma

= Nt,ae
−Ma(1−

∑
f

U|t,fSa|t,f )(B.8)

This can be generalized to any set of p|f as long as the proportions are sorted from smallest to

largest in the derivation. The sequential nature of the fleets does not need to be accounted for in

the calculations.

However, a potential problem is that the sum of the exploitation rates in equation B.14 may exceed

a value of one (or some defined maximum), which is theoretically impossible. Therefore, a maximum

exploitation rate (Umax) must be specified, which is realistically less than one. To determine if the

overall exploitation rate is greater than Umax, the partition-specific exploitation rates (e.g., age,

sex, region, and fleet) for a time-step are summed across fleets within a region, and the maximum

rate within a region over the partions are determined. This is called UmaxObsy .

UmaxObs|t = maxa

∑
f

Sa|t,fU|t,f

(B.9)

If UmaxObsy > Umax, then

U|t,f =
Umax

UmaxObs|t

C|t,f

Bsr,p
|t,f

(B.10)

which is simply an adjustment to the original exploitation rate (U|t,f ). When this adjustment

occurs, the predicted catch will be different than the input catch, and a penalty should be applied

since catches are considered observed inputs (not data with error).
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Catch is an input and biomass is calculated as part of the modelling process, so the exploitation

rate is calculated as the ratio between catch and exploitable biomass for a particular fleet.

U|t,f =
C|t,f

Bsr,p
|t,f

(B.11)

where C|t,r,f is the catch in time-step t and region r for sector f , and Bsr
|t,r,f is the selected-and-

retained (exploitable) biomass for that fishery.

The exploitable biomass is calculated from the numbers-at-age (N), selectivity (S), and mean

weight-at-age (W ).

Bsr,p
|t,f =

A∑
a=0

Na|tSa|t,fWa|t,fe
−p|fMa|t(B.12)

B.2 Fisheries are sequential and earlier fisheries effect later ones

The more appropriate way to model the fisheries, but more complex in terms of accounting, is to

account for the decline in the population from fisheries occuring before later fisheries. For example,

as above, let’s assume there are two fleets with the mortality from fleet 1 occurring after three fifths

of the natural mortality (p|1 = 0.6) and the mortality from fleet 2 occurring after one-quarter of

the natural mortality (p|2 = 0.25). The ”pulse” fishing activity of fleet 2 causes a reduction in the

population by the time fleet 1 operates its fishery, and the catch (in numbers) for each fleet would

be calculated as follows.

Cna|t,f=2 = Na|te
−p2Ma|tU|t,2Sa|t,2

Cna|t,f=1 =
(
Na|te

−p2Ma|t − Cna|t,f=2

)
U|t,1Sa|t,1e

−(p1−p2)Ma|t

=
(
Na|te

−p2Ma|t − U|t,2Sa|t,2e−p2Ma|tNa|t
)
U|t,1Sa|t,1e

−(p1−p2)Ma|t

= Na|te
−p2Ma|t

(
1− U|t,2Sa|t,2

)
U|t,1Sa|t,1e

−(p1−p2)Ma|t

= Na|te
−p1Ma|t

(
1− U|t,2Sa|t,2

)
U|t,1Sa|t,1

Generally,

Cna|t,f = U|t,fSa|t,fe
−pfMa|tNa|t

∏
f ′∈pj 6=f<pf

(1− UjSa|t,f ′)(B.13)
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where (1−UjSa|t,f ′) is the probability of surviving a fishery that occurs before the fishery for fleet

f . This requires some additional logic to determine which fisheries have occurred before the fishery

of interest to properly account for that preceeding mortality.

The numbers-at-age in the next time-step can be derived in a similar manner as above, except

using the newly defined catch equations.

Na|t+1 =
[[
Nt,ae

−0.25Ma − CNa|f=2

]
e−(0.6−0.25)Ma − CNa|f=1

]
e−(1−0.6)Ma(B.14)

Converting the catch (CN ) to exploitation rates using equation B.13 and simplifying produces the

equation for N in the next time-step.

Na|t+1 =
[[
Na|te

−0.25Ma −Na|tU|t,f=2Sa|t,f=2e
−0.25Ma

]
e−(0.6−0.25)Ma −

Na|tU|t,f=1Sa|t,f=1e
−0.6Ma(1− U|t,f=2Sa|t,f=2)

]
e−(1−0.6)Ma

=
[
Na|te

−0.6Ma(1− U|t,f=2Sa|t,f=2)−Na|tU|t,f=1Sa|t,f=1e
−0.6Ma(1− U|t,f=2Sa|t,f=2)

]
e−0.4Ma

=
[
Na|te

−0.6Ma(1− U|t,f=2Sa|t,f=2)(1− U|t,f=1Sa|t,f=1)
]
e−0.4Ma

= Na|te
−Ma

∏
f

(1− U|t,fSa|t,f )(B.15)

This is simply the numbers-at-age in the current time-step times the survival from natural causes

times the survival from each fishery. With this formulation, adjusting for a maximum exploitation

rate is not necessary, other than ensuring that each fleet-specific exploitation rate does not exceed

a value of one (or a defined maximum).

Catch is an input and biomass is calculated as part of the modelling process, so the exploitation

rate is calculated as the ratio between catch and exploitable biomass for a particular fleet, as shown

in B.11.

The exploitable biomass is calculated from the numbers-at-age (N), selectivity (S), and mean

weight-at-age (W ), and accounts for the decrease in abundance due to fisheries that occurred
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previously.

Bsr,p
|t,f=2 =

A∑
a=0

Na|tSa|t,2Wa|t,2e
−p|2Ma|t(B.16)

Bsr,p
|t,f=1 =

A∑
a=0

(
Na|te

−p|2Ma|t − Cna|t,2
)
Sa|t,1Wa|t,1e

−(p|1−p|2)Ma|t(B.17)

=

A∑
a=0

(
Na|te

−p|2Ma|t − U|t,2Sa|t,2e−p2Ma|tNa|t
)
Sa|t,1Wa|t,1e

−(p|1−p|2)Ma|t(B.18)

=

A∑
a=0

Na|te
−p|2Ma|t

(
1− U|t,2Sa|t,2

)
Sa|t,1Wa|t,1e

−(p|1−p|2)Ma|t(B.19)

=

A∑
a=0

Na|te
−p|1Ma|t

(
1− U|t,2Sa|t,2

)
Sa|t,1Wa|t,1(B.20)

(B.21)

which is the same result if using the equation C = U ×B.

B.3 Comparison

It can be shown that these two assumptions produce the exact same results when only one fishery

is considered. When two or more fisheries occur at exactly the same time, the catch is exactly

the same (i.e., one fishery does not occur before another, thus they operate on the same biomass),

but the equation for Nt+1 is slightly different between the two formulations. Say that two fisheries

operate 3
5

ths
of the way through the time-step, each with an exploitation rate of 0.5. If they operated

independently and each took half of the exploitable biomass, then all of the exploitable biomass

would be removed since the sum of the two exploitation rates is 1. The real issue comes in when

the sum of the exploitation rates is greater than 1, which is theoretically impossible.

Using the above two fishieries occurring at exactly the same time, let’s assume that the exploitation

rates were 0.3 and 0.4, which is still quite high for a marine commercial fishery. That is a combined

exploitation rate 0.7 (assuming selectivity equals 1) and the equations for abundance in the next

year (equations B.14 and B.15) are

Independent fisheries = Na|te
−Ma [1− (0.3 + 0.4)] = Na|te

−Ma(0.3)

Sequential fisheries = Na|te
−Ma(1− 0.3)(1− 0.4) = Na|te

−Ma(0.42)
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Therefore, the number-at-age is 1.4 times greater for the sequential fishery compared to the inde-

pendent fisheries. This occurs because of the product of the two exploitation rates is added back

in, when expanded.

Independent fisheries = [1− (U1 + U2)] = (1− U1 − U2)

Sequential fisheries = (1− U1)(1− U2) = (1− U1 − U2 + U1U2)

This is especially useful when the exploitation rate is high because it never allows the exploitation

rate to exceed one. For example, when U=1 (the theoretcial maximum) the independent fisheries

equation results in a multiplier of -1, while the sequential fisheries equation results in a multiplier

of 0. When exploitation rates are 0.2 for two fisheries, the difference between the two methods

is small (i.e., 0.2 × 0.2 = 0.04 and 1.07 times greater for the sequential fisheries). Additionally,

exploitation rates in the sequential method are more interpretable as exploitation rates and do not

need adjustments to make them remain below the theoretical maximum of one. Figure B.1 shows

that are small exploitation rates, the difference in survival between the two methods is small.

Figure B.1: A comparison of survival to the next-time step for the sequential (black) and independent

(red) methods assuming exploitation rates (U) of 0.05, 0.1, and 0.2 for fishery 1, and a

range of exploitation rates for fishery 2.
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It is unlikely that two fisheries operate independently when exploitation rates are high and it may

be more prudent to treat them in a sequential nature, calculating the exploitation rates for each

from the sequential exploitable biomass (or splitting them up into many catch events and switching

back and forth between the two, which is overly complicated). We propose to use the equations

under the sequential fisheries, and when two or more fisheries operate at the exact same time, the

fishery operates in a sequence in order of the size of their catch for that time-step (smallest to

largest).

B.4 A more complex example with three fisheries and discard

mortality

It is worth working through the concept of sequential fisheries when three fisheries occur and each

has discard mortality. Let’s assume there are three fleets with the mortality from fleet 1 occurring

after one-fifth of the time-step (p|1 = 0.2), the mortality from fleet 2 occurring after two-fifths of

the time-step (p|2 = 0.4), and the mortality from fleet 3 occurring after four-fifths of the time-step

(p|2 = 0.8). The total mortality (in numbers) includes catch and discard mortality for each fleet

and would be calculated as follows (with the current time-step subscript (t) removed for simplicity).

TMn
a|f=1 = Cna|1 +Dn

a|1

= Nae
−p1MaU|1Sa|1Ra|1 +Nae

−p1MaU|1Sa|1(1−Ra|1)da|1

= Nae
−p1MaU|1Sa|1

[
Ra|1 + (1−Ra|1)da|1

]
TMn

a|f=2 =
(
Nae

−p1Ma − TMn
a|1

)
U2Sa|2

[
Ra|2 + (1−Ra|2)da|2

]
e−(p2−p1)Ma

= Nae
−p2MaU2Sa|2

[
Ra|2 + (1−Ra|2)da|2

] [
1− U1Sa|1

[
Ra|1 + (1−Ra|1)da|1

]]
TMn

a|f=3 =
[(
Nae

−p1Ma − TMn
a|1

)
e−(p2−p1) − TMn

a|2

]
U3Sa|3

[
Ra|3 + (1−Ra|3)da|3

]
e−(p3−p2)Ma

= Nae
−p3MaU3Sa|3

[
Ra|3 + (1−Ra|3)da|3

] 2∏
i=1

{
1− UiSa|i

[
Ra|i + (1−Ra|i)da|i

]}
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Generally,

TMn
a|f = Nae

−pfMaUfSa|f
[
Ra|f + (1−Ra|f )da|f

]
×(B.22) ∏

i∈pj<pf

{
1− UiSa|i

[
Ra|i + (1−Ra|i)da|i

]}
where j is over all fleets. In essence, the total mortality is determined from the numbers-at-age

that survived naturally to that point and survived the probability of fishing mortality (retained or

discarded and died) from all fleets up to that point in the time-step.
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