

# **MSE** objectives

Agenda Item 5 IPHC-2019-SRB015-07

Boitor

### **Goals & General Objectives**

- Biological sustainability
  - 1. Avoid critical stock sizes
- Optimize directed fishing opportunities
  - 2. Maintain spawning biomass around a target level
  - 3. Limit catch variability
  - 4. Maximize directed fishing yield
- Minimize discard mortality
- Minimize bycatch and bycatch mortality



# Key outcomes of the ad hoc WG meeting

- AGREED that minimizing bycatch mortality may be specified as a general objective under the goal to optimize directed fishing opportunities
- AGREED to keep the primary objectives to a small number for simplicity
- AGREED that MSAB members undertake the following tasks before MSAB014 in October 2019 and report their findings at MSAB014
  - Discuss with stakeholders any specific fishery objectives they have for specific IPHC Regulatory Areas
- AGREED that the biological sustainability objectives are informed by science, hence IPHC Secretariat will provide possible options for biomass distribution tolerance, reviewed by the SRB, to be presented and discussed during MSAB014



#### A review of the elements of objectives

- General objective: a high-level statement reflecting a desired outcome.
- **Measurable objective**: A specific objective that can be measured using three elements
  - Measurable outcome: a threshold, limit, or quantity that is desired
  - Time-frame: a period of years and how far in the future to evaluate the objective
  - Tolerance: a level of risk



#### A review of the elements of objectives

- **Performance metric**: a metric calculated from the three elements of a measurable objective
  - Can be reported as meeting the objective or as a
  - Statistic of interest: a performance metric without the tolerance (a probability) or without the tolerance and threshlold/limit (a value).



# Three levels of hierarchy in objectives

- 1. Objectives reflecting biological sustainability and stability of catch limits (as a result of natural variability and assessment uncertainty)
  - Occurs at coastwide or Biological Region level
- 2. Interaction objectives (the effect of one area on another)
  - Occurs at the Biological Region, management zone, or IPHC Regulatory Area level
- 3. Objectives within IPHC Regulatory Areas



#### Management zone





# **Prioritizing objectives**

- Classify as primary (report to Commission) or additional
- A few area-specific should be chosen to complement the primary coastwide objectives
- Conservation objectives should be prioritized over fishery objectives
- Fishery objectives do not need to be prioritized because it is often useful to examine trade-offs
- Area-specific tolerances can prioritize among areas



#### IPHC harvest strategy policy (current interim)



#### **Management Procedure**

https://www.iphc.int/the-commission/harvest-strategy-policy



#### **Commission directives and recommendations**

- **AM095-R, para 59a.** The Commission **ENDORSED** the primary objectives and associated performance metrics used to evaluate management procedures in the MSE process (as detailed in paper <u>IPHC-2019-AM095-12</u>)
- **AM095-R, para 59c.** The Commission **RECOMMENDED** the MSAB develop the following additional objective, as well as prioritize this objective in the evaluation of management procedures, for the Commission's consideration.

i. A conservation objective that meets a spawning biomass target.



## **Biological sustainability (Coastwide)**

| GENERAL OBJECTIVE                                                               | MEASURABLE<br>OBJECTIVE                                                                                                | Measurable<br>Outcome                                                                                      | TIME-<br>FRAME | TOLERANCE |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------|-----------|
| 1.1. KEEP SPAWNING<br>BIOMASS ABOVE A<br>LIMIT TO AVOID<br>CRITICAL STOCK SIZES | Maintain a female<br>spawning stock<br>biomass above a<br>biomass limit<br>reference point at<br>least 95% of the time | SB < Spawning<br>Biomass Limit (SB <sub>Lim</sub> )<br>SB <sub>Lim</sub> =20% unfished<br>spawning biomass | Long-term      | 0.05      |



#### Fishery coastwide objective: target biomass

| GENERAL<br>OBJECTIVE                                                                       | MEASURABLE OBJECTIVE                                                                                                 | MEASURABLE<br>OUTCOME                                                                                            | TIME-<br>FRAME | TOLERANCE |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| 2.1 MAINTAIN<br>SPAWNING BIOMASS<br>AROUND A LEVEL<br>THAT OPTIMISES<br>FISHING ACTIVITIES | 2.1a SPAWNING BIOMASS<br>THRESHOLD<br>Maintain SB above a<br>threshold reference point at<br>least 80% of the time   | SB <spawning<br>Biomass Threshold<br/>(SB<sub>Thres</sub>)<br/>SB<sub>Thres</sub>=SB<sub>30%</sub></spawning<br> | Long-<br>term  | 0.20      |
|                                                                                            | 2.1b SPAWNING BIOMASS<br>TARGET<br>Maintain SB above a<br>biomass target reference<br>point at least 50% of the time | SB <spawning<br>Biomass Target<br/>(SB<sub>Targ</sub>)<br/>SB<sub>Targ</sub>=SB<sub>??-??%</sub></spawning<br>   | Long-<br>term  | 0.50      |



#### **MSAB** Request

MSAB013–Req.02 (para. 38) The MSAB REQUESTED that the Scientific Review Board (SRB) and the IPHC Secretariat consider the draft objectives contained within Table 1 and to provide advice to the MSAB on potential MSY and MEY proxy target reference points for objective 2.1b



- Equilibrium
  - Will happen over and over again in the long-term



#### $B_{t+1} = B_t + Production_t - C_t$



- Equilibrium
  - Will happen over and over again in the long-term
- Surplus production
  - The additional biomass above replacement



$$B_{t+1} = B_t + Production_t - C_t$$

- Equilibrium
  - Will happen over and over again in the long-term
- Surplus production
  - The additional biomass above replacement



$$B_{t+1} = B_t + Production_t - C_t$$

- With no fishing
  - Yield is zero
  - Unfished biomass
- With extremely high F
  - Yield is zero
  - No biomass





- MSY
  - Maximum Sustainable Yield
  - The maximum of the yield curve
- F<sub>MSY</sub>
  - The fishing mortality rate that would result in MSY
- RSB<sub>MSY</sub>
  - Typically less than 50%





- Productivity regimes •
  - Change the shape of the equilibrium yield curve



**IPHC** 

0.0

0.1

0.3

0.9

1.0

0.7

**Relative Spawning Biomass** 

# **Economic yield**

- Cost
  - There is a cost to fishing
- Revenue
  - The Value from the Yield minus the Cost to fish
- Maximum Revenue is not equal to Maximum Yield





# **Dynamic Reference Points**

#### Purpose:

- provide a basis for defining a target reference point
- to investigate variability in reference points given
  - changes in productivity and selectivity
  - different types of uncertainty

#### Reference points considered: SB<sub>0</sub>, MSY, RSB<sub>MSY</sub>, SPR<sub>MSY</sub>

Methodology:

- Equilibrium model
- 2018 assessment model
- Coastwide MSE operating model

Main sources of variability considered:

- Environmental regimes (high or low unfished average recruitment)
- Weight at age
- Selectivity
- Steepness
- Natural mortality

See paper: IPHC-2019-SRB015-11 Rev\_1



IPHC

#### **Dynamic Reference Point: methods (1)** Equilibrium model:

- 2 fleets (directed commercial and non-directed discard mortality)
- 2 sex
- Grid of scenarios across selectivity, weight at age, steepness, environmental regimes and M



#### **Dynamic Reference Point: methods (2)** 2018 Ensemble Assessment model:

- Each one of the 4 assessment models used retrospectively
- Weight-at-age and selectivity for the associated year
- R0 from the current regime
- No estimated uncertainty for each year



# **Dynamic Reference Point: methods (3)**

#### MSE Operating Model:

- Short and long coastwide model from 2018 ensemble
- Reference point estimation for the last 50 years of the long term projection
- 500 simulations using final year (uncertainty)
- Low and high regime
- Weight-at-age modelled as a random walk or scenarios
- Selectivity modelled as a random walk, and changes in selectivity as a function of weight at age



#### **Equilibrium model**









INTERNATIONAL PACIFIC HALIBUT COMMISSION IPHC

#### **Results from stock assessment models**







#### **Results from MSE operating model**





## **Range of Results**

• Assuming a steepness of 0.75

|                         |             | Method     |           |
|-------------------------|-------------|------------|-----------|
| Reference Point         | Equilibrium | Assessment | MSE OM    |
| SB <sub>0</sub> (M lbs) | 327–1,020   | 254–1,721  | 273–1,087 |
| MSY (M Ibs)             | 48–136      | 17–124     | 13–87     |
| RSB <sub>MSY</sub>      | 22–28%      | 22–27%     | 24–29%    |
| SPR <sub>MSY</sub>      | 29–34%      | 29–33%     | 29–34%    |

• Steepness has a large effect



#### Results on dynamic reference points analysis

- SB<sub>0</sub> and MSY vary depending on regime
- $RSB_{MSY}$  and  $SPR_{MSY}$  are more consistent
  - RSB<sub>MSY</sub> ~ 20-30%
  - SPR<sub>MSY</sub> ~ 30-35%
- A reasonable RSB<sub>MSY</sub> proxy, including a precautionary allowance for unexplored sources of uncertainty, would be 30%
- A proxy target defined as MEY
  - Lower end:  $1.2 \times RSB_{MSY}$  (~36%)
  - Upper end:  $1.4 \times RSB_{MSY}$  (~42%)



#### Fishery coastwide objective: target biomass

| GENERAL<br>OBJECTIVE                                                                       | MEASURABLE OBJECTIVE                                                                                               | MEASURABLE<br>OUTCOME                                                                                            | TIME-<br>FRAME | TOLERANCE                                       |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------|
| 2.1 MAINTAIN<br>SPAWNING BIOMASS<br>AROUND A LEVEL<br>THAT OPTIMISES<br>FISHING ACTIVITIES | 2.1a SPAWNING BIOMASS<br>THRESHOLD<br>Maintain SB above a<br>threshold reference point at<br>least 80% of the time | SB <spawning<br>Biomass Threshold<br/>(SB<sub>Thres</sub>)<br/>SB<sub>Thres</sub>=SB<sub>30%</sub></spawning<br> | Long-<br>term  | 0.20<br>sonable proxy for<br>RSB <sub>MSY</sub> |
|                                                                                            | 2.1b SPAWNING BIOMASS<br>TARGET<br>Maintain SB above a<br>biomass target reference                                 | SB <spawning<br>Biomass Target<br/>(SB<sub>Targ</sub>)<br/>SB<sub>Targ</sub>=SB<sub>36%</sub></spawning<br>      | Long-<br>term  | 0.50<br>asonable proxy for                      |



#### **Coastwide simulation results**

40:20 30:20 25:10

- All above biomass limit
- An input SPR > 40% would satisfy target of 36%
- An input SPR > 42% would satisfy threshold of 30%





0.56

0 54

0.52

0.48

0.46

0.44

0.42

Input SPR

0.4

0.38

0.36

0.34

0.32

0.3

# Catch variability and yield

| GENERAL OBJECTIVE                          | MEASURABLE<br>OBJECTIVE                          | Measurable<br>Outcome                   | TIME-<br>FRAME | TOLERANCE    |
|--------------------------------------------|--------------------------------------------------|-----------------------------------------|----------------|--------------|
| 2.2. LIMIT CATCH<br>VARIABILITY            | Limit annual changes<br>in the coastwide<br>TCEY | Annual Change (AC)<br>> 15% in any year | Short-term     | 0.25         |
| 2.3. MAXIMIZE<br>DIRECTED FISHING<br>YIELD | Maximize average<br>TCEY coastwide               | Median coastwide<br>TCEY                | Short-term     | STATISTIC OF |

Note that Annual Change is used instead of Average Annual Variability (discussed at the Ad-Hoc WG, see IPHC-2019-SRB015-INF01)



# Annual Change (AC) vs. AAV

- Annual Change (AC)
  - The percent change from one year to the next

$$AC_t = \frac{|TCEY_t - TCEY_{t-1}|}{TCEY_{t-1}}$$

- Average Annual Variability (AAV)
  - Average percent change between years over a ten-year period

$$AAV = \frac{\sum_{t=t_1}^{t_1+10} |TCEY_t - TCEY_{t-1}|}{\sum_{t=t_1}^{t_1+10} TCEY_t}$$



#### **Medium-term performance metrics**

| Control Rule                     | 30:20   |         |         |          |         |         |         |         |
|----------------------------------|---------|---------|---------|----------|---------|---------|---------|---------|
| Constraint                       | No Cons | straint | maxChan | geBoth15 | slowUpF | astDown | Multi-y | ear (3) |
| Input SPR                        | 0.46    | 0.38    | 0.46    | 0.38     | 0.46    | 0.38    | 0.46    | 0.38    |
| <b>Biological Sustainability</b> |         |         |         |          |         |         |         |         |
| P(any RSB<20%)                   | 0.02    | 0.02    | 0.07    | 0.07     | 0.02    | 0.03    | 0.02    | 0.02    |
| Fishery Sustainability           |         |         |         |          |         |         |         |         |
| P(any RSB<30%)                   | 0.11    | 0.31    | 0.14    | 0.27     | 0.08    | 0.23    | 0.13    | 0.4     |
| Median absolute<br>change TM     | 15.6%   | 19.1%   | 15.0%   | 15.0%    | 6.5%    | 7.7%    | 0.0%    | 0.0%    |
| P(any1 AC TM > 15%)              | 1       | 1       | 0.11    | 0.10     | 0.61    | 0.76    | 0.94    | 0.96    |
| P(any2 AC TM > 15%)              | 0.97    | 0.99    | 0.09    | 0.08     | 0.32    | 0.52    | 0.70    | 0.77    |
| P(AAV > 15%)                     | 0.69    | 0.84    | 0.04    | 0.06     | 0.07    | 0.15    | 0.14    | 0.30    |
| Median average TM                | 46.8    | 51.8    | 46.1    | 50.9     | 45.0    | 51.1    | 46.5    | 51.2    |
| Median AAV TM                    | 17.9%   | 23.1%   | 11.2%   | 11.7%    | 7.0%    | 8.8%    | 8.0%    | 10.8%   |



#### Interpretation of results with AC

- Max Change15%
  - AC rarely exceeds 15%
  - AC is often at 15%
- SlowUpFastDown
  - AC is sometimes >15%
  - AC is often much less than 15%, but 1 year out of 10 is often greater than 15%



## **Annual Change objective**

- Should define this measurable outcome more clearly
  - A question of willingness for exceeding 15% in 1, 2, ... years
- Possible language
  - AC > 15% in any year out of a ten-year period
  - AC > 15% in X years out of a ten-year period
  - Median AC > 15%
  - Average AC > 15% (similar to AAV)



#### **Priority coastwide objectives**

| GENERAL OBJECTIVE                          | MEASURABLE OBJECTIVE                                                     | MEASURABLE OUTCOME                                  | TIME-FRAME | TOLERANCE    |
|--------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------|------------|--------------|
| 1.1. SB ABOVE LIMIT                        | Maintain SB > above<br>limit reference point at<br>least 95% of the time | SB < SB <sub>20%</sub>                              | Long-term  | 0.05         |
| 2.1 MAINTAIN<br>SPAWNING BIOMASS           | 2.1a Maintain SB<br>above a threshold at<br>least 80% of the time        | SB < SB <sub>30%</sub>                              | Long-term  | 0.20         |
| OPTIMISES FISHING<br>ACTIVITIES            | 2.1b Maintain SB<br>above a target at least<br>50% of the time           | SB < SB <sub>36%</sub>                              | Long-term  | 0.50         |
| 2.2. LIMIT CATCH<br>VARIABILITY            | Limit annual changes<br>in coastwide TCEY                                | Annual Change (AC)<br>> 15% in <mark>3</mark> years | Short-term | 0.25         |
| 2.3. Maximize<br>Directed Fishing<br>Yield | Maximize average<br>TCEY coastwide                                       | Median coastwide<br>TCEY                            | Short-term | STATISTIC OF |



## **Objectives related to distributing the TCEY**

- Biological sustainability
  - 1. Conserve spatial population structure
- Optimize directed fishing opportunities
  - 2. Maintain spawning biomass around a target level that optimizes fishing activities
  - 3. Limit catch variability
  - 4. Maximize directed fishing yield



## **Conservation Objective - distributing the TCEY**

| General Objective                             | Measurable Objective                                                                         | Measurable Outcome                                                                | Timeframe | Tolerance                |
|-----------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------|--------------------------|
| 1.1A CONSERVE SPATIAL<br>POPULATION STRUCTURE | Maintain a defined minimum<br>proportion of spawning<br>biomass in each Biological<br>Region | $p_{SB,R} < p_{SB,R,min}$                                                         | Long-term |                          |
|                                               | Proportion of Pacific halibut<br>spawning biomass in each<br>Biological Region               | Proportion of Pacific<br>halibut spawning<br>biomass in each<br>Biological Region | Long-term | STATISTIC<br>OF INTEREST |

Complementary to coastwide conservation objective (proportion) The minimum proportion should sum to <1, and may be based on

- Historical estimates from modelled FISS data
- Percentage of estimated unfished biomass
- Agreement



# Estimated proportion of regional O32 biomass

| Region | Minimum<br>Observed | Objective | Justification                               |
|--------|---------------------|-----------|---------------------------------------------|
| 2      | 11.3%               | 5%        | Few spawning areas                          |
| 3      | 46.1%               | 33%       | Currently at low %;<br>Many spawning areas  |
| 4      | 14.9%               | 10%       | Has been consistent;<br>Many spawning areas |
| 4B     | 3.7%                | 2%        | May partly be a separate stock              |
| Sum    | 76.0%               | 50%       |                                             |

| Year | Region 2<br>(2A, 2B, 2C) | Region 3<br>(3A, 3B) | Region 4<br>(4A, 4CDE) | Region 4B    |
|------|--------------------------|----------------------|------------------------|--------------|
| 1993 | <u>15.</u> 1%            | 60.5%                | 14.9%                  | 9.4%         |
| 1994 | 17.7%                    | 57.7%                | 15.2%                  | 9.5%         |
| 1995 | 19.3%                    | 57.2%                | 14.6%                  | 9.0%         |
| 1996 | 16.4%                    | 58.3%                | 16.3%                  | 8.9%         |
| 1997 | 15.1%                    | 58.5%                | 17.5%                  | 8.9%         |
| 1998 | 12.9%                    | 57.1%                | 21.6%                  | 8.5%         |
| 1999 | 11.3%                    | 59.8%                | 21.5%                  | 7.3%         |
| 2000 | 12.3%                    | 59.5%                | 21.7%                  | 6.5%         |
| 2001 | 15.1%                    | 59.0%                | 20.5%                  | 5.3%         |
| 2002 | 15.9%                    | 61.0%                | 18.9%                  | <b>4.</b> 2% |
| 2003 | 14.3%                    | 62.8%                | 19.0%                  | 3.9%         |
| 2004 | 12.1%                    | 66.7%                | 17.6%                  | 3.7%         |
| 2005 | 14.2%                    | 65.1%                | 16.7%                  | 3.9%         |
| 2006 | 14.0%                    | 63.7%                | 17.5%                  | 4.8%         |
| 2007 | 14.8%                    | 63.2%                | 16.1%                  | 5.9%         |
| 2008 | 16.3%                    | 58.5%                | 18.4%                  | 6.7%         |
| 2009 | 17.9%                    | 55.5%                | 20.4%                  | 6.2%         |
| 2010 | 20.3%                    | 53.8%                | 20.1%                  | 5.9%         |
| 2011 | 23.1%                    | 51.8%                | 19.1%                  | 6.0%         |
| 2012 | 25.1%                    | 52.3%                | 18.0%                  | 4.6%         |
| 2013 | 28.4%                    | 46.8%                | 19.1%                  | 5.7%         |
| 2014 | 27.6%                    | 47.4%                | 20.1%                  | 4.8%         |
| 2015 | 29.2%                    | 45.2%                | 20.8%                  | 4.9%         |
| 2016 | 28.4%                    | 48.0%                | 19.1%                  | 4.5%         |
| 2017 | 28.3%                    | 46.1%                | 20.5%                  | 5.0%         |
| 2018 | 27.3%                    | 46.2%                | 20.6%                  | 5.9%         |



**IPHC** 

## **Conservation Objective - distributing the TCEY**

| General Objective                             | Measurable Objective                                                                         | Measurable Outcome                                                                | Timeframe | Tolerance                |
|-----------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------|--------------------------|
| 1.1A CONSERVE SPATIAL<br>POPULATION STRUCTURE | Maintain a defined minimum<br>proportion of spawning<br>biomass in each Biological<br>Region | $p_{SB,2} < 0.05$<br>$p_{SB,3} < 0.33$<br>$p_{SB,4} < 0.10$<br>$p_{SB,4B} < 0.02$ | Long-term | 0.05                     |
|                                               | Proportion of Pacific halibut<br>spawning biomass in each<br>Biological Region               | Proportion of Pacific<br>halibut spawning<br>biomass in each<br>Biological Region | Long-term | STATISTIC<br>OF INTEREST |

- It is difficult to define specific proportions
- It may be easier to distribute the TCEY according to stock distribution rather than defining percentages
  - This would harvest in proportion to the distribution of biomass



| General Objective                                                                | Measurable Objective                                                                                                                                 | Measurable Outcome                                     | Timeframe               | Tolerance                |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------|--------------------------|
| 2.1a Maintain biomass<br>around a target that<br>optimizes fishing<br>activities | Maintain a proportion of<br>coastwide O26 Pacific<br>halibut in each area,<br>estimated from modelled<br>survey results, greater than a<br>threshold | $p_{B_{AllSizes},A} > p_{B_{AllSizes},A,min}$          | Short-term<br>Long-term |                          |
|                                                                                  | Proportion of O26 Pacific halibut biomass in each area                                                                                               | Proportion of O26 Pacific halibut biomass in each area | Short-term<br>Long-term | STATISTIC<br>OF INTEREST |

Not specifically discussed by ad hoc WG

Maintain exploitable biomass in each IPHC Regulatory Area

• O26 biomass (modelled survey results) as a proxy for exploitable biomass



## Proportion of "all sizes" WPUE

| Year | 2A   | 2B                 | 2C                 | 3A    | 3B    | 4A                 | 4B           | 4CDE               |
|------|------|--------------------|--------------------|-------|-------|--------------------|--------------|--------------------|
| 1993 | 1.4% | 6.3%               | 7.0%               | 37.1% | 25.9% | 6. <mark>1%</mark> | 9.4%         | 6.9%               |
| 1994 | 1.3% | 7.7%               | 8.0%               | 34.1% | 26.0% | 6.9%               | 9.3%         | 6.7%               |
| 1995 | 1.2% | 8.8%               | 8.7%               | 34.1% | 25.8% | 7.0%               | 8.7%         | 5.7%               |
| 1996 | 1.2% | 7.4%               | 8.0%               | 32.5% | 28.1% | 8.5%               | 8.6%         | 5.7%               |
| 1997 | 1.2% | 5.6%               | 8.1%               | 35.3% | 25.1% | 11.0%              | 8.4%         | <mark>5</mark> .3% |
| 1998 | 1.3% | 4. <mark>8%</mark> | 7.0%               | 28.1% | 30.7% | 13.6%              | 8.2%         | 6.3%               |
| 1999 | 1.4% | 4.3%               | 6.0%               | 27.1% | 34.6% | 12.9%              | 7.1%         | 6.6%               |
| 2000 | 1.3% | 4. <mark>9%</mark> | 6. <mark>4%</mark> | 32.6% | 28.9% | 12.7%              | 6.3%         | 7.0%               |
| 2001 | 1.3% | 6.2%               | 7.8%               | 34.3% | 26.0% | 11.7%              | 5.1%         | 7.6 <mark>%</mark> |
| 2002 | 1.0% | 6.2%               | 8.6%               | 40.4% | 22.2% | 10.6%              | 3.9%         | 7.1%               |
| 2003 | 1.0% | 5. <mark>0%</mark> | 7.8%               | 38.0% | 26.7% | 10.0%              | 3.5%         | 7.9 <mark>%</mark> |
| 2004 | 1.1% | 4. <mark>8%</mark> | 5.8%               | 44.5% | 23.9% | 9.0%               | 3.2%         | 7.7%               |
| 2005 | 1.3% | 5.7%               | 7.1%               | 45.0% | 19.9% | 9.1%               | 3.3%         | 8.5%               |
| 2006 | 1.1% | 5.7%               | 7.1%               | 41.7% | 21.7% | <mark>8.3</mark> % | 4.0%         | 10.5%              |
| 2007 | 1.0% | 6.4%               | 7.3%               | 40.4% | 22.3% | 7.9%               | <b>4.9</b> % | 9.8%               |
| 2008 | 1.1% | 7.1%               | 7.4%               | 37.6% | 21.2% | 9.7%               | 5.3%         | 10.6%              |
| 2009 | 0.9% | 8.5%               | 7.3%               | 34.9% | 21.7% | 10.2%              | <b>4.8</b> % | 11.6%              |
| 2010 | 1.2% | 9.0%               | 7.6%               | 36.3% | 20.1% | 9.1%               | 4.3%         | 12.4%              |
| 2011 | 1.5% | 8.7%               | 8.8%               | 37.7% | 18.5% | 8.2%               | 4.5%         | 12.0%              |
| 2012 | 1.4% | 9.5%               | 10.3%              | 39.6% | 16.7% | 7.7%               | 3.6%         | 11.3%              |
| 2013 | 1.6% | 10.9%              | 12.0%              | 34.6% | 16.0% | 7.0%               | 4.9%         | 13.1%              |
| 2014 | 1.6% | 10.3%              | 11.5%              | 38.0% | 15.3% | 6.8%               | <b>4.</b> 0% | 12.6%              |
| 2015 | 1.9% | 11.1%              | 11.6%              | 36.7% | 15.3% | <b>6.7</b> %       | <b>4.</b> 0% | 12.5%              |
| 2016 | 1.7% | 10.7%              | 12.2%              | 37.1% | 16.4% | 6.0%               | 4.0%         | 12.0%              |
| 2017 | 1.4% | 9.0%               | 14.2%              | 38.5% | 12.3% | 7.4%               | 4.4%         | 12.7%              |
| 2018 | 1.5% | 9.8%               | 11.8%              | 39.2% | 12.0% | 7.0%               | 5.2%         | 13.4%              |



| General Objective                                                                | Measurable Objective                                                                                                                                 | Measurable Outcome                                                                                                                                                                                                                                                                                             | Timeframe               | Tolerance                |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------|
| 2.1a Maintain biomass<br>around a target that<br>optimizes fishing<br>activities | Maintain a proportion of<br>coastwide O26 Pacific<br>halibut in each area,<br>estimated from modelled<br>survey results, greater than a<br>threshold | $\begin{array}{l} p_{B_{AllSizes,2A}} &> ?\\ p_{B_{AllSizes,2B}} &> ?\\ p_{B_{AllSizes,2C}} &> ?\\ p_{B_{AllSizes,3A}} &> ?\\ p_{B_{AllSizes,3A}} &> ?\\ p_{B_{AllSizes,4A}} &> ?\\ p_{B_{AllSizes,4A}} &> ?\\ p_{B_{AllSizes,4B}} &> ?\\ p_{B_{AllSizes,4B}} &> ?\\ p_{B_{AllSizes,4CDE}} &> ?\\ \end{array}$ | Short-term<br>Long-term |                          |
|                                                                                  | Proportion of O26 Pacific halibut biomass in each area                                                                                               | Proportion of O26 Pacific halibut biomass in each area                                                                                                                                                                                                                                                         | Short-term<br>Long-term | STATISTIC<br>OF INTEREST |

May be best reported as a statistic of interest

• Reminder: this would be the "simulated/actual" biomass in the OM



| General Objective               | Measurable Objective                                            | Measurable Outcome                                                   | Timeframe               | Tolerance    |
|---------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|-------------------------|--------------|
| 2.2a Limit Catch<br>Variability | Limit annual changes in the<br>TCEY for each Regulatory<br>Area | Annual Change by Regulatory<br>Area (AC <sub>A</sub> ) > 15%         | Long-term<br>Short-term | 0.25         |
|                                 |                                                                 | Maximum AC by Regulatory<br>Area (AC <sub>A</sub> )                  | Long-term<br>Short-term | STATISTIC OF |
|                                 |                                                                 | Average Annual Variability by<br>Regulatory Area (AAV <sub>A</sub> ) | Long-term<br>Short-term | STATISTIC OF |

Same as coastwide, except specific to IPHC Regulatory Area

- The ad hoc WG felt that coastwide and area objectives are useful
  - Coastwide: recognizing estimation error
  - Area: recognizing distribution uncertainty



| General Objective                       | Measurable Objective                                                                 | Measurable Outcome                          | Timeframe               | Tolerance                |
|-----------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------|-------------------------|--------------------------|
|                                         | Maximize average TCEY by Regulatory Area                                             | Median Reg Area<br>TCEY                     | Long-term<br>Short-term | STATISTIC OF<br>INTEREST |
|                                         | Maintain TCEY above a<br>minimum absolute level by<br>Regulatory Area                | $TCEY_A < TCEY_{A,min}$                     | Long-term<br>Short-term |                          |
| 2.3a Maximize Directed<br>Fishing Yield | Maintain a percentage of the coastwide TCEY above a minimum level by Regulatory Area | %TCEY <sub>A</sub> > %TCEY <sub>A,min</sub> | Long-term<br>Short-term |                          |
|                                         | TCEY changes with local abundance                                                    | To be discussed at MSAB014                  |                         |                          |
|                                         | Present the range of TCEY<br>by Regulatory Area that<br>would be expected            | Range of TCEY by<br>Regulatory Area         | Long-term<br>Short-term | STATISTIC OF<br>INTEREST |
| INTERNATIONAL PACIFIC                   | IPHC                                                                                 |                                             |                         | Slide 46                 |

- Maximize average TCEY by Reg Area
  - May not be an objective across all IPHC Regulatory Areas
  - Report Median TCEY in each IPHC Regulatory Areas

- TCEY changes with local abundance
  - Can report correlation between TCEY and abundance
  - TCEY increases or decreases same as abundance
  - TCEY increases or decreases at a similar rate as abundance
  - What is abundance?



- Maintain TCEY above a minimum percentage
  - Interaction objectives
- Maintain TCEY an minimum absolute value
  - IPHC Regulatory Area objective

| Absolute                                   | minimum                                                         | Minimum percentage of coastwide TCEY                         |                                                         |  |
|--------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|--|
| Pro                                        | Con                                                             | Pro                                                          | Con                                                     |  |
| Easily defined                             | May not be achievable at low biomass                            | Scales with changing<br>biomass                              | Catch limit not defined and may be small                |  |
| Objective met when all areas meet minimum. | Only rational when minimum can be achieved in all areas         | Implies rational sharing<br>between IPHC<br>Regulatory Areas | Objective may be met at<br>unacceptable catch<br>limits |  |
|                                            | Summation across areas<br>may be greater than what is<br>likely |                                                              | Summation across<br>areas may be greater<br>than 100%.  |  |



- The Commission ADOPTED:
- a) a coastwide target SPR of 47% for 2019;
- b) a share-based allocation for IPHC Regulatory Area 2B. The share will be defined based on a weighted average that assigns 30% weight to the current interim management procedure's target TCEY distribution and 70% on 2B's recent historical average share of 20%. This formula for defining IPHC Regulatory Areas 2B's annual allocation is intended to apply for a period of 2019 to 2022. For 2019, this equates to a share of 17.7%; and
- c) a fixed TCEY for IPHC Regulatory Area 2A of 1.65 mlbs is intended to apply for a period from 2019-2022, subject to any substantive conservation

concerns.



| General Objective      | Measurable Objective                                                                 | Measurable Outcome                                      | Timeframe               | Tolerance                |
|------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------|--------------------------|
|                        | Maintain TCEY above a<br>minimum absolute level by<br>Regulatory Area                | TCEY <sub>A</sub> < TCEY <sub>A,min</sub>               | Long-term<br>Short-term |                          |
| 2.3A MAXIMIZE DIRECTED | Maintain a percentage of the coastwide TCEY above a minimum level by Regulatory Area | %TCEY <sub>A</sub> > <mark>%TCEY<sub>A,min</sub></mark> | Long-term<br>Short-term |                          |
| FISHING YIELD          | Maintain TCEY above a<br>minimum absolute level by<br>Regulatory Area                | Median Reg Area<br>TCEY                                 | Long-term<br>Short-term | STATISTIC OF<br>INTEREST |
|                        | Maintain a percentage of the coastwide TCEY above a minimum level by Regulatory Area | Proportion of TCEY by<br>Reg Area                       | Long-term<br>Short-term | STATISTIC OF<br>INTEREST |



- Minimize potential of a catch limit equal to zero for the directed fishery
  - Is this similar to maintain TCEY above an absolute level?
  - Is this necessary?



#### **Priority distribution objectives**

| General Objective                                                                    | Measurable Objective                                                                         | Measurable Outcome                                                                | Timeframe               | Tolerance                |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------|--------------------------|
| 1.1A CONSERVE SPATIAL<br>POPULATION STRUCTURE                                        | Maintain a defined minimum<br>proportion of spawning<br>biomass in each Biological<br>Region | $p_{SB,2} < 0.05$<br>$p_{SB,3} < 0.33$<br>$p_{SB,4} < 0.10$<br>$p_{SB,4B} < 0.02$ | Long-term<br>(Med-term) | 0.05                     |
| <b>2.1A MAINTAIN BIOMASS</b><br>AROUND A TARGET THAT<br>OPTIMIZES FISHING ACTIVITIES | Proportion of O26 Pacific halibut biomass in each area                                       | Proportion of O26<br>Pacific halibut biomass<br>in each area                      | Short-term<br>Long-term | STATISTIC OF<br>INTEREST |
| 2.2A LIMIT CATCH VARIABILITY                                                         | Limit annual changes in the<br>TCEY for each Regulatory<br>Area                              | Annual Change by<br>Regulatory Area (AC <sub>A</sub> )<br>> 15%                   | Long-term<br>Short-term | 0.25                     |
| 2.3A MAXIMIZE DIRECTED                                                               | Maintain TCEY above a<br>minimum absolute level by<br>Regulatory Area                        | Median Reg Area TCEY                                                              | Long-term<br>Short-term | STATISTIC OF             |
| FISHING YIELD                                                                        | Maintain a percentage of the coastwide TCEY above a minimum level by Regulatory Area         | Proportion of TCEY by<br>Reg Area                                                 | Long-term<br>Short-term | STATISTIC OF<br>INTEREST |
| INTERNATIONAL PAGIFIC                                                                | IPHC                                                                                         |                                                                                   |                         | Slide 52                 |

# **Ten priority objectives**

- Coastwide
  - Biomass limit
  - Biomass target
  - Biomass threshold
  - Yield variability
  - Maximize yield

- Regions
  - Spatial population structure
- IPHC Regulatory Areas
  - Available Pacific halibut
  - Yield variability
  - Maintain TCEY above a minimum absolute level
  - Maintain a percentage of the coastwide TCEY above a minimum level



# Tuning objective (SRB015-R, para. 51)

- Establish a criterion that will narrow down the management procedures
  - $B_{lim} = 20\% B_0$  is a criterion
  - Spatial population structure objective is also a criterion
  - Target and threshold objectives can also be criteria
- Then examine trade-offs between other objectives



#### **INTERNATIONAL PACIFIC**





INTERNATIONAL PACIFIC HALIBUT COMMISSION

