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Chapter 1

Introduction

This technical document describes the Management Strategy Evaluation (MSE) framework and its ele-
ments, details specifications of the framework for the evaluation of scale and distribution management
procedures, provides definition of terms used, and defines the technical details of the models and equations
used within the framework. This is a working document that will be revised often as development of the
MSE framework progresses. Therefore, this document is currently incomplete and will have occasional
revisions.

The engine of the MSE framework consists of a closed-loop simulation with an operating model and a
management procedure (Figure 1.1).

Cannot control Can control
Operating Model Management Procedure

Population Monitoring

Stock dynamics
Parameters
Variability

+ Data collection (surveys, fishery)
+ (Catch accounting

Annual Estimation model

Process = Estimate management related
Actual quantities

Removals

Total Mortality

Harvest Rule

Fisheries * Harvest rate, allocations
. + Control rule
Dynamics Commission * Catch caps and floors
Availability «33_ » Size limits (fishery selectivity)
Variabili A=f . istributi
ity Decisions Distribution of harvest

Figure 1.1: An illustration of the closed-loop simulation within the MSE framework consisting of an
operating model and a management procedure.
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Chapter 2

Operating model

In a management strategy evaluation (MSE), operating models (OM) simulate the population and fishery
dynamics. It incorporates life-history processes such as recruitment, growth, migration, maturation, and
mortality of the fish population, as well as fishery processes such as selectivity, availability, and catchability.
Descriptions of the various processes are provided below along with the mathematical equations used to
simulate those processes. Many of the details are drawn from the Hilborn and Walters (1992), Quinn and
Deriso (1999), the CASAL manual Bull et al. (2012), Stock Synthesis technical details Methot and Wetzel
(2013), and the Coleraine manual Hilborn et al. (2000).

There is uncertainty in the parameterization of the processes, natural variability in the processes, and mul-
tiple hypotheses about the mechanisms of the processes. These three sources of variability are introduced
in three different ways.

1. Parameter uncertainty is introduced by conditioning the operating model to data, and determining the
distribution of uncertainty for each parameter as well as correlation with other parameters. Parameter
values for an individual simulated trajectory are randomly drawn from the multivariate estimated
probability distribution. Therefore, each simulated trajectory uses a different set of parameters, thus
including variability that represents the uncertainty in the parameters. This is described in Section
2.4.

2. Natural variability is introduced by defining a random process associated with various concepts. For
example, recruitment varies naturally and is modelled by including random deviates applied annually
to average recruitment. Other processes may have specific patterns such as changes in weight-at-age.
This is described in Section 2.5.

3. Structural uncertainty is included by defining multiple hypotheses and implementing them as separate
operating models. For example, growth may occur in different ways between models. Or, data may
be structured in a different way when conditioning the model. Structural uncertainty captures the
variability that can not be captured by the two methods above.

Parameters that will have uncertainty are defined (and those that are fixed are given fixed values), methods
to include natural variability are defined, and potential areas of structural uncertainty are noted.
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2.1 The state object

The state is the accounting of the population in numbers within an operating model and is contained in
a state object with many dimensions. The state represents the intrinsic characteristics of the modeled
population: age, maturity, and sex. This state is then evolved on a computational domain parameterized
by time and space, which are extrinsic variables. Furthermore, sectors (fisheries and survey) interact with
the state. Clarified this way, the state object contains a representation of the stock at a place and time
and can be subsetted along any of these axes as needed to determine the state for any combination of these
dimensions.

The dimensions are fixed inputs that are defined by the user, thus may be unique to any operating model.
The different dimensions, and maximum ranges, are shown in Table 2.1. Maturity state (immature or
mature) is not included as a dimension here (specifically for the Pacific halibut operating model) but
may be a useful charactersitic to track for some stocks, depending on fishing intensity and the proportion
maturing at age. Instead, the mature population is determined using the proportion mature at age, which
can be applied to various dimensions of the population state (see Section 2.3).

Table 2.1: Partitions of the state object that are fixed inputs and the likely minimum and maximum input
for each partition.

Dimension
Variable Min Max | Description

Age (a) 1 251 | Age classes ranging from 0 to 250. Halibut will likely use 0 to 30
and age always starts at zero. A capital A indicates the maximum
age

Sex (s) 1 3 Sex, which includes female, male, and unsexed, in that order, la-
beled 1, 2, and 3.

Time (t) 0 00 A minimum and maximum time-step (e.g., year) is input by user.
The difference +1 determines the number of time-steps. These are
not projected time-steps, but time-steps modelled to condition the
OM. A time-step will typically be a year, but specific points in
time (e.g., beginning, middle, or end of the year) may be noted in
a superscript (see below).

Region (r) 1 (o) Number of spatial regions with migration between

Area within Region (r;) | 1 o0 Number of areas within a region. Migration is not modelled be-
tween areas.

Sector (f) 1 00 Number of fishing-related sectors, which includes fisheries and sur-
veys. Sectors typically will operate at the region level or a finer
scale, but there may be a case where a sector operates across re-
gions (which is unlikely for the Pacific halibut operating model).

The state object is the key component of the population dynamics and must contain sufficient information
to determine the population dynamics as well as any intermediate calculations, such as fishery catches. In
this implementation, there are always six partitions, but some operating models may have a partition with
only one element, effectively eliminating that dimension. For example, a single-sex, single-area model with
no maturity partition would simply be a matrix of years and ages.
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2.2 Notation

Notation of the variables in the operating model uses the concept of defining a quantity of the population
(such as numbers or biomass), subscripted by various characteristics (intrinsic and extrinsic) and super-
scripted by specific concepts (such as spawning or exploitable). The subscripts reflect the intrinsic and
extrinsic characteristics of the population by listing the intrinsic characteristics first (age and sex), followed
by the extrinsic characteristics (time, region/area, and fishing sector). The possible subscripts are defined
in Table 2.1 and are always subscripted in the order presented in those tables. For example, the numbers
for age and sex in a year and region is N, g, . When a subscript is not included, it is implied that the
quantity is a summation over that index (or the index doesn’t apply, as in the case of fishing sector) and
ambiguity will be alleviated using the letter associated with the index when necessary (e.g., No—1jy=1 18
the number of females in year 1 summed over all ages and regions).

Variables specific to a fishing sector (f) include a subscript for that sector at the end. For example, the
catch-at-age for females from sector f in year 1 and region 2 would be notated as C, 1 2, ¢ Fishery sectors
typically will operate at the region level or a finer scale, but the region subscript is retained for clarity and
in case a sector does operate across regions (which is unlikely for the Pacific halibut operating model).

Finally, superscripts are used to notate specific concepts such as spawning biomass, which would be notated
as Bji ly=1 to represent the spawning biomass for females in year 1 over all regions. Additionally, a
superscript that is a number between 0 and 1 indicates the time in the year that the quantity is calculated.
For example, BP0, BsP:05 B3Pl would be the spawning biomass calculated at the beginning of the year,
middle of the year, and end of the year, respectively. Possible superscripts and their definition are shown

in Table 2.2.

Table 2.2: Superscripts for variable and their meaning.

Variable Description

ma Mature

Sp Spawning. Most often used with B®P to represent spawning biomass.

ST Selected and retained referring to the fish that are landed by a fishery sector.

n Numbers. Indicates that a quantity, such as catch, is in numbers (C™). Note that

if a superscript is not used on catch, it is in weight.

Denotes update made to numbers-at-age after partial timestep is complete, which
includes the effect of movement but not mortality.

"

Denotes update made to numbers-at-age at the end of the timestep.

Number 0-1 | A number between zero and 1 (inclusive) indicates the time within the year. For
example, 0 indicates beginning of the year, 0.5 indicates middle of the year, and 1
indicates end of the year.

2.3 Population dynamics
The population dynamics are modelled as an age-structured annual process accounting for changes in the
numbers-at-age for each partition within the state (e.g., age and sex).

The sequence of processes from the start of the time-step (typically annual) is

1. age increment,
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2. recruitment (based on spawning biomass in a previous time-step),
3. movement,

4. mortality. The sequence of mortality from all sources is theoretically described below, but does not
need to be specifically modelled as such because the mortality calculations will appropriately account
for the sequence, as described in Section 2.3.4 and a later Appendix.

(a) portion of natural mortality,
(b

)

) fishing mortality for one or more sectors,
¢) portion of natural mortality,
)

)

(
d

(e) etc., until a full time-step of natural mortality has been applied

fishing mortality for one or more sectors,

5. spawning.

The state object (Na73|t,r) is updated at three different points in the annual process, and superscripts note
the time point.

N : Beginning of the time-step after age increment and recruitment of age 0.
N’ : After movement before mortality
N” . End of the time-step, after all natural and fishing mortality

At any point in time, the biomass may be desired and can be calculated from numbers-at-age (Na,s‘w) and
weight-at-age (W, 4t.r.)-

(21) Ba,s|t,r = Na,s|t,7‘Wa,s|t,r

Various partitions of biomass may be desired. For example, spawning biomass is the weight of spawning
fish, and exploitable biomass is the weight of fish available to a specific fishery. Biomass can also be
calculated at specific points of time in the time-step. These various types of biomass will be defined in the
sections below, and will be noted with a superscript. For example, spawning biomass is B,".

This section describes the technical specifications of the general population dynamics and how the historical
population can be modelled given inputs such as catch and weight-at-age, as well as parameters that may
be fixed or estimated from data. Conditioning the operating model is the process of determining the range
of parameters and hypotheses that describe the observations, and is covered in Section 2.4. Projecting the
population forward in time is discussed in Section 2.5, and involves defining random and fixed processes
such as recruitment and changes in weight-at-age.

2.3.1 Age increment

The numbers-at-age at the beginning of the time-step with an annual time-step is obtained by incrementing
the previous time-step’s age class to one time-step older and calculating recruitment for age 0.

Rs|t,r a=0
(22) Na,s\t,r = Na—l,s\t—l,r 1<a<A
Na—l,s\t—l,r + NA,s\t—l,r a=A
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2.3.2 Recruitment

Recruitment is a function of the spawning biomass calculated from the end of the previous time-step after
all of the processes (movement and mortality) have occurred. See Section 2.3.6 for a description of spawning
biomass.

o

_“R
(2.3) Ryry = pyr % (B, _y) x elwr™20) 5 ld

where p, . is the proportion recruiting to region r in time-step ¢, f (Bjill | +1) is the equilibrium stock-recruit
relationship using the end of the time-step spawning biomass (superscripts) for females from the previous
time-step (subscripts), e is the annual deviation in recruitment for time-step ¢, and elv*d is an overall

adjustement for recruitment regime shift.

TODO: Additional details on recruitment need to be added, including the definition of lognormal deviations,
environmental effects, and summing proportions across regions.

Density-dependent Recruitment

Density-dependence in the spawner-recruit relationship is modelled using a Beverton-Holt formulation.

GJBSILI
=1[t—1
(2.4) A ———
L+ st:’1|t—1

where the parameters a and b are determined from steepness (h), unfished equilibrium recruitment (Ryp),
and unfished equilibrium spawning biomass (B").

Recruitment Distribution

TODO:

2.3.3 Movement

In its most simple form, movement (also called migration) is the proportion of individuals that move from
region j to region k (individuals can only move among regions and movement among areas within regions
is not explicitly modelled). The probability that the individual stays in its current region is equal to
one minus the sum of the probabilities of moving out of the current region. Movement is specific to the
partitions age, sex, time-step, and region.

One of the most common ways to model movement is using a transition matrix. Let W;_,; be the instan-
taneous movement from region j to region k expressed as the proportion of the population in region j
moving to region k. The diagonal of the transition matrix will be the proportion that stay in region j and
the off-diagonal of W;_,; will represent the proportion that move out of region j. The row of the matrix
corresponds to j (from) and k corresponds to the column of the matrix (to). Each row of the transition
matrix should sum to 1. Each dimension of the transition matrix will be equal to the number of regions.
For example, let there be n regions (R = 1...n), then the transition matrix for each age, sex, and time-step
will look like:
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Upo1 Wi -0 Uiy,

Vo1 Pp—o -+ Vo,
M = ) . )

Unst Wnao o0 Wpey

The numbers-at-age in region j after movement, for a given age, sex, and time-step, is determined from
the following equation.

Nyatrei = Npmi = Nie=i D Vasitgok + O NrmtYasit e
oy oy

= N|r:j 1- Z qla,s|t,jﬁk + Z N\r:kqla,sh‘/,kﬁj

k#j k#j
- N|T=J'qlavs\t7j%j + Z NIT=k\Ija,s\t,kaj
k#j
(2.5) - Z Nir=k¥a,sltk—;

ker

Movement parameters

There are two options for the construction of the transition matrix: 1) entered as simple proportions in
an array by time-step, age, sex, and of course regions (with filling in duplicated partitions made easy), or
2) parameterize the proportions-at-age as a function of age and modify the parameters of the function for
each time-step and sex. An example could be the use of a logistic function or a type-II functional form,
outlined below.

(2.6) Logistic : W, gy xsj =
Type II: \I]a,s\t,kaj =

2.3.4 Mortality

These operating models contain two types of mortality: natural mortality and fishing mortality. These are
described below with definitions and mathematical equations. Total mortality, the summation of natural
and fishing mortality, is noted as Z and is often modelled using a differential equation describing the
instantanous change with respect to a short period of time.

dN

N g« N
dt x

Expanding to a single annual time step, the numbers in the next time-step, if mortality was the only
process, are

(2.8) Nyy1 = Nye?
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However, fishing mortality is often assumed to occur at a specific point in time.
(2.9) Nyp1 = Nye_M (1-0y)

where U, is an annual exploitation rate. This formulation makes the calculations simpler, faster, and
easier to interpret. These equations are general mortality equations, and the specific equations related to
natural and fishing mortality for the operating models are described below. We follow the FAO definition
(http://www.fao.org/3/a0212e/a0212e12.htm})and call the fishing mortality process in Equation 2.8
instantaneous and that in Equation 2.9 finite.

Natural Mortality

Natural mortality represents mortality from all sources other than fishing (e.g., natural causes, predation,
and emigration out of the area being modelled) and may reflect some processes that are not specifically
accounted for in the model. Many fisheries models assume that natural mortality is constant over time,
which will likely capture the general trend in abundance, but natural mortality likely varies from time-step
to time-step. Therefore, the operating model allows for natural mortality that is age, sex, time-step, and
region specific, but will likely assume a single value for natural mortality for each sex.

Given a single time step, the numbers-at-age in the next time step, without fishing and recruitment (i.e.,
no additions to the population), are

(2.10) N N

— efMa,sht,r
a,s|t,r a,slt,r

Fishing Mortality

Fishing mortality can be modelled using the Baranov catch equation (an instantaneous formulation as with
natural mortality), but it is simpler, faster, and more interpretable to model fishing mortality as a finite
exploitation rate (also called Pope’s approximation). This assumes that fishing occurs at a specific point
in time, which will be an important assumption to consider when the fishery operates year round and at
high mortality rates. For most applications, especially Pacific halibut with relatively low fishing mortality
rates and a defined season, the exploitation rate is a useful approximation.

(2.11) Upry = gmf

[t.r.f
where C|; ;. r is the catch in time-step ¢ and region r for sector f, and B®r,. ; is the selected-and-retained
biomass for that fishery. The time-point is the proportion of the time-step, py, r, at which the fishery occurs,
as shown in Equation (2.12) and is commonly defined as 0.5. The fishing sectors typically operate at a scale
finer than region, but region is used in the equations for fishing mortality because a single Pacific halibut
may be available to any of the sectors in a region throughout an annual time step. Therefore, sectors
are tracked at the region level, but may represent fishing in a particular area within a region (through
selectivity and fishery timing, ps). If a sector operates at a greater scale than region, certain quantities
will be calcualted by region and summed across appropriate regions. Further detail on the spatial scale on

which fisheries operate will be added at a later date.

The selected-and-retained biomass is calculated from selectivity (S), proportion retained (R), and mean
weight-at-age (W).

P M,
(212) |Str7“pf ZZ a,slt,ry as|trfRas|t7‘fWas\tre Pir,j ¥ aslt,r
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where py,.  is the proportion of natural mortality that occurs before the “pulse” fishery takes place. The
proportion retained represents fish that are caught and subsequently retained or landed. Fish that are
released may suffer discard mortality, which is discussed below.

Calculating exploitation rates at the region level recognizes that all fish in a region are available to a
fishery sector, and the exploitation rate is relative to the exploitable biomass in the region for that sector.
Therefore, regions should be defined appropriately in accordance with fishery sectors.

Catch at age and sex in numbers (C™) or weight (C) for a sector in an area can be determined from the
exploitation rate (U), selectivity (.5), proportion that subsequently die (R), and mean weight-at-age ().

n _ — M, .
(2'13) Cd,Slt,’/‘,f - U|t77‘7fNa15|t77‘Sa15|t7T7fRa7S|t7T7fe pnf @sltr
—prM
(2.14) Casitrf = Ut fNasitrSasitrfBasltr fWasjere P mstr

and the total predicted catch for a sector in a region is

A
(2.15) Cliry = DD Cosns

a=0 s

A
(2.16) Clirg = 2. Casjtas

a=0 s

Discarded fish-at-age (fish caught but not retained) that suffer mortality after release are an additional
source of mortality not captured in the retained catch. Discard mortality is calculated as

(2.17) it = UtnsNasitaSasitrs (1= Rasftrs) dasferpe 7 Meslor
—pr M, .
(218) Da”s|t77‘7f = U|t,r,fNa,s\t,rSa,s\t,r,f (1 - Ra,S't,’!’,f) da,5|t,7‘,fWa7S‘t77’e Pr.f asltr

where d, g, ¢ i3 the discard mortality rate (DMR) and (1 — Ry 4.5, f) dy,a,s,- s is the proportion of selected
fish that are released and do not survive. The summation of catch (Cj;, ;) and discarded fish that die
(Dytrs) is the total mortality for sector f (T'Mj,. ).

Natural and fishing mortality can be accounted for simultaneously, and the numbers-at-age in the next
time-step, after all mortality, are

(219)  Nygr = Nogewe Mostor | 1= " Uy Sasitns [Rasitns = (1= Rasjrs) dasitr.s)
7

The exploitation rate is defined to be between zero and one, but it is possible that the explotation rate
may exceed one if the calculated exploitable biomass is less than the fix input catch for either a single
fishing fleet or the summation of multiple fleets. If the sum of exploitation rates for a specific partition
exceeds 1, a negative population size for that partition will occur. Therefore, a maximum exploitation rate
(Upmaz) must be specified, which is realistically less than one. To determine if the overall exploitation rate is
greater than Up,.., the partition-specific exploitation rates (e.g., age, sex, region, and fleet) for a time-step
are summed across fleets within a region, and the maximum rate within a region over the partions are
determined. This is called U;’:‘T‘”Obs.

(2.20) U‘?};}xObS = MaZqs ZSa,s|t,r,fRa,s|t,r,fU|t,r,f
f
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If U]"9%0% > Upygq, then

Lmax C\t rf
2.21 U =
( ) [t,r,f Uﬁ?;wObs Bsr|t,r,f

which is simply an adjustment to the original exploitation rate (U, Itr, 7) calculated in Equation 2.11. When
this adjustment occurs, the predicted catch will be different than the input catch, and a penalty should be
applied since catches are considered observed inputs (not data with error). This penalty will be discussed
in a later section on conditioning.

2.3.5 Maturity

Maturity and spawning may be separated into two separate states with maturity being a part of the state
object, and the numbers of mature fish specifically tracked as part of the state. However, this operating
model does not partition maturity in the state, but instead simply determines the numbers of mature fish
from mature proportions-at-age (called the maturity curve).

1"

(2.22) Nma = N 7S|t,T‘Qa7S|t7T

a,s|t,r a

Maturity functional forms and parameters

The maturity curve (2) may be an empirical vector of proportions input by the user from externally
estimated data. Alternatively, the vector or proportions may be determined from a functional form, such
as a logistic equation, with appropriate parameters defined.

2.3.6 Spawning biomass

The number of spawning individuals is the number that are mature at age times the proportion spawning
at age. This allows for the accounting of individuals that are mature (able to produce gametes) but are not
actively spawning in that time-step (e.g., skip spawning), and those that are mature and actively spawning
in that time-step.

(223) NP = el (I)a,s|t,7‘

a,s|t,7" a,s|t77"

The spawning biomass (B*P) is calculated as follows.

A
Sp _ sp 1
(2.24) BY = Y N NI Wi
a=0 s
where W;S' tr is the weight-at-age for that age, sex, time-step, and region at the end of the time-step.

Spawning proportion parameters

The proportions spawning (®) is a vector of proportions-at-age input by the user from externally estimated
data. Typically, this vector contains a value of 1 for all ages because there is currently a paucity of
information for many fish stocks.
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2.3.7 Size-at-age

Growth is not modelled specifically (e.g, length-at-age), but weight-at-age is used to calculate biomass-at-
age from numbers-at-age. Mean weight-at-age, sex, and region for a particular time-step (W, ,,,, which will
simply be referred to as weight-at-age regardless of the various partitions), is input by the user. Projecting
variability in weight-at-age is discussed in Section 2.5.

2.3.8 Initial population

The initial population is the partitioned population numbers at the start of the first modelled time-step,
and is based on unfished equilibrium recruitment (Ry) with three potential adjustments.

1. An overall adjustment (¢°7) that changes Ry (i.e., the overal scale of recruitment) and could mimic
a different regime that influenced the initial population.

2. Cohort (a) specific adjustments to account for recruitment variability (e7,4).

3. Adjustments by age to account for an average level of fishing that occurred before the initial time-step
(1 - Zf Sa,s\[,r,fU\I,r,f)-

Calculating the initial equilibrium population size is not a simple calculation when region is in the partition
and initial recruitment deviations are used. It is easiest to build up the population sequentially by each
cohort that makes up the initial population using the sequence of processes described in Section 2.3:
recruitment, movement, and mortality. This will be time-consuming, however, but only has to be done
while an operating model is being conditioned.

The numbers at age 0 for the cohort that is age a in the initital time-step (I) for each sex and region is

Eu|1_07R)
(225) NO,S‘I*CL,T‘ = Ds Pa|lr 66|1R0 1- ZSO,S\I,r,fU\I,r,f 6( ’
f

where p, is the proportion of sex s at birth (>, ps = 1) and Da|1, 18 the proportion of cohort a recruiting
to region r in the initial time-step (3, D1,y = 1). It is assumed that there is a single selectivity curve for
the initial time period that applies equally to all cohorts and a constant exploitation rate for all cohorts
over their life-span before the initial time-step.

Equation 2.25 calculates the number for each cohort when they were age 0 prior to the initial time-step. To
calculate the numbers-at-age in the initial time-step, the annual process for each cohort is iterated up to
the age that each cohort would be in the initial time-step. For example, to calculate the cohort that is age
3 in the initial population, Equation 2.25 would first determine the number of that cohort that were born
into the population three time-steps prior. Then, the population dynamics would apply to that cohort for
three iterations (0 to 1, 1 to 2, and 2 to 3) to determine the numbers in that cohort at age 3 in the initial
time-step. Therefore, the annual process for the cohort that is age a in the initial time-step is iterated
from i = a...1 in the following equations. It begins by incrementing the annual process.

(226) Na—i+1,s|]—z’+1,r = Na—i,s|]—i,r
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Then, movement from region j to k is applied. The subscripts for age, sex, and time-step are dropped for
clarity in the derivation below, but are noted in the final equation. Also note that the movement-at-age,
Pst, does not change in time-steps prior to the initial time-step.

Na7i+1,s|17i+1,j = Nlj o Nlj Z \11|ij + Z N|k‘I’IIHj
k#£j k#j
= Ny (1= e |+ N
k#j k#j
= NV NpPpo,
kit
(2.27) = ZNa_i+1,su—z'+1,k‘l’a—i+1,sll,k—>j

ker

Finally, natural and fishing mortality is applied. Subscripts for age, sex, and time-step are dropped for
clarity, but are the same as in the left side of the equation unless indicated (e.g., M, U, S, R, and d).

1"

o (—M
(2.28) Ny jy1gi—it1,r = N|r6( i) 1= SiafUitrg [Rirag = (1= Rireg) dig g

f
Graphically, the process will look like:
Ui—1—{5...0}
Sel I-5 I1—4 I1-3 I1-2 I—-1 I
So cohb,—g  cohd,—g | coh3,—g | cOh24—g | cohle—g | cohO.—g
S, coh5 a1 N\ N\ N cohl,—;
So cohbg—2 BN N coh24—2
S cohby—3 BN coh3,—3
Sy cohbg—q4  cohdy—4
S cohbq—s
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Summary of initial population numbers

To summarize how the initial numbers in the partitions are completed, psuedo code is provided below.

1. Determine the inital number of age zero (i = 0) fish for the cohort (“coh” in the schematic represen-

tation above) of age a from Equation 2.25, where a = 0,1,2,...,nA. The n is a multiplier on the
plus group age A to simulate beyond the plus group to ensure the dynamics of the plus group are
correct.

2. Loop over a = 1,2,...,nA. For each a,

(a) loop over i = a,a—1,...,2,1 applying Equations 2.26, 2.27, and 2.28 to build up the initial
numbers for each cohort at age a.

3. sum numbers over a = A, A+ 1,...,nA to create the plus group (A).

A value of 3 is typically used for n, but it depends on the plus group age and the time

Calculation of other initial population values

Initial spawning biomass is calculated after the initial numbers-at-age are completed.

A
" 1
(229) Blslpﬂn = Z Z Na,s\I,rQa,S|I,T¢a75|]7TWy7G,S7T

a=0 s
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Population Dynamics

The sequence
1. age increment,
2. recruitment (based on spawning biomass in the previous time-step),
3. movement,
4. mortality, and
5. spawning.

The notation

N : Beginning of the time-step after age increment and recruitment.
N’ .  After movement before mortality
N" . End of the time-step, after natural and fishing mortality

The equations

Rs|t,r a=0
Nyasrm = Na—1sjt-1,r 1<a<A
Na—l,s|t—1,r + Na,s|t—1,r a=A

/
Na,s|t,r = § :Na,3|t7kqja,s|t,k—>r
ker

1" !

N(Z,Slt,?‘ = Na,Slt,TeiMa’S‘tW 1 - Z U\t,r,fsa,sﬁ,r,f [Ravs‘t’rvf - (1 - Ra»s|t7r:f) davs|t:7'7fj|
f

Page 16 of 25



MSE framework, DRAFT 10 September 2019 IPHC-2019-MSABO014-INF02

2.4 Conditioning the Operating Models
2.4.1 Likelihoods

2.5 Projecting the Operating Models
2.5.1 Recruitment

See IPHC-2018-MSAB012-07. Discuss regimes, PDO, and recruitment variability.

2.5.2 Fishing mortality

Based on the management procedure. Mimic catch sharing plans by IPHC Regulatory Area to determine
allocation across sectors.

2.5.3 Movement

Annual variability in movement yet to be determined.

2.5.4 Weight-at-age

Projected values of weight-at-age are modelled using a random walk to introduce inter-annual variability.
Will need to do this by region as well and have regions in some sort of synchrony.
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Chapter 3

Specifications for the MSE framework

3.1 Population structure

The current investigation of management procedures at IPHC is focused on the coastwide scale and the
distribution of mortality limits.

To simulate the distribution of mortality and determine how management procedures meet area-specific
objectives, the operating model will have to include multiple regions with migration between them. Biolog-
ical Regions (Figure 3.1) have been defined based on current knowledge of movement as well as biological
understanding. A Biological Region is larger than an IPHC Regulatory Area (Figure 3.1), but fisheries
operate at the level of the Regulatory Area or finer. Movement will not be specifically modelled between
areas within a region, but movement will always be modelled between regions. Even though the computer
program for the operating model allows flexibility to define any arrangement of regions and areas, with
movement modelled between them, it would be moot to model movement within a Biological Region on
an annual time-step because it is assumed that a fish may be anywhere within the region within a year.
The modelling of fisheries in separate areas is described below.

170°E 180° 170°W 160°W 150°"W 140°W 130°wW 1200W

B60°N

55°N

Region 4
Regioh 4 9

45°N

40°N | IPHC Reguiatory Area

Mercator projection

170°E 180° 170°W 160°W 150°'W 140°wW 130°W 120°w

Figure 3.1: IPHC Regulatory Areas (grey shaded areas) and biological regions (colored circles).
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3.1.1 Biological parameters

3.2 Structure of the fisheries

The annual mortality limits determined for various fishery sectors occur at the level of IPHC Regulatory
Areas (Figure 3.1). However, some fisheries for Pacific halibut may operate at a finer scale than an IPHC
Regulatory Area. The best definition of fishery areas will be determined from the objectives defined for the
MSE, as well as the availability of knowledge to parameterize the fisheries for simulation, which is likely
at the IPHC Regulatory Area level. This can be done when modelling the population at larger Biological
Regions by defining separate sectors within a region, and using separate selectivity curves and exploitation
rates to account for the availability of Pacific halibut to a particular sector (see Section 3.2.1). This assumes
that each fishery within a Biological Region operates on the same pool of fish, but each fishery encounters
those fish differently.

The various fishery sectors, or sources of fishing-related mortality, is likely to be those defined in Table
3.1. Notice that surveys are included with fishery sectors because they are a specific type of fishing-related
mortality. Fishery sectors are often called fleets in fisheries models, but we chose to use sectors to describe
the sub-divisions within specific areas. A sector will not span multiple areas, thus an area and a sector will
be synonymous.

Table 3.1: Potential fishery sectors to include in the model. Each sector will occur in each region, and may
be split further or possibly aggregated.

Sector Regions Regulatory Areas Description

Commercial All All Commercial longline fisheries targeting Pacific hal-
ibut.

Directed Fishery All All Commercial discard mortality that is not ac-

Discard Mortality counted for in the landings of Pacific halibut from

longline fisheries. This could be undersized fish
or mortality due to lost gear. This may be mod-
elled separately but is likely to be modelled using
retention in the commercial fisheries.

Recreational A recreational fleet for each Regulatory Area will
be modelled unless recreational fisheries with a Bi-
ological Region are similar and can be combined
for convenience.

Subsistence

Non-directed Fishery All All A fleet within each region to account for non-

Discard Mortality directed fishery mortality (i.e., bycatch).

Survey All All The survey will be modelled within each Biological
Region to account for the small amout of mortal-
ity.

3.2.1 Fishery parameters

Selectivity and availability
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Appendix A

Parameters and notation

Table A.1: Dimension and partition notation in the operating models (used as subscripts).

Parameter Description

Y Year.

a Age. A capital A indicates the maximum age.

S Sex, which includes female, male, and unsexed, in that order, labeled 1, 2, and 3.

r Region with movement occurring between regions.

7 Area within region. Movement is not modelled between areas.

m Immature state of the maturity partition.

ma Mature state of the maturity partition.

sp Spawning state calculated from the maturity partition. Note that this is not a specific

partition in the state object.
Fishery sector.

I Initial, meaning the starting time-step.
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Table A.2: Parameters in the operating models.

Parameter Description

Population dynamics parameters

Ny a,s,rm Numbers for year, age, sex, region, and maturity
By Unfished equilibrium biomass
Ry Unfished equilibrium recruitment
By a,s,rm Biomass at the beginning of year y (and possibly other partitions as noted)
ifaysmm Mature biomass at the beginning of year y
ia,s,r,m Spawning biomass at the beginning of year y
Bff,,y ¥ Biomass selected and retained by sector f in year y
My osr Natural mortality
Wy.a,s,r Mean weight-at-age in year y (and possibly other partitions)
Q Proportion of mature individual at age, or the proportion transitioning from immature to
mature at age, depending on partioning maturity in the state object.
P Proportion of spawning individuals at age
Wik Movement rate from area j to area k
01 Parameter for Type II functional response of movement from area 1 to area 2
02 Parameter for Type II functional response of movement from area 1 to area 2
Ps Proportion of females at birth.
Dy,r Proportion of recruitment in region r in year y. Sums to one over regions.
Dy Proportion of natural mortality that occurs before exploitation from sector f occurs.
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Table A.2 continued.
Parameter Description

Fishing mortality related parameters
Cy.a,s,r,f Catch (in weight) for year, age, sex, region, and sector. Catch summed over age and sex

(Cy.r,r) is typically an input to the model.

C’é\,'a’s,r’f Catch (in numbers) for year, region, and sector.
Uyrs Exploitation rate for sector f

Sa,f Selectivity-at-age for sector f

R ¢ Proportion retained-at-age for sector f

Survey parameters

Z; Survey index for year j

q Survey catchability

T Error in year j for the survey series

azj Total variability of the survey in year j

CPUE parameters

Uy,i CPUE for year 1

@ Multiplier in relationship between CPUE and abundance for the CPUE series
B Nonlinearity parameter in relationship between CPUE and abundance

v Error in year i for CPUE series

o2 Total variability of the CPUE series in year 4
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Appendix B

Fishing mortality using exploitation rates

Fishing mortality is parameterized with an exploitation rate and is assumed to occur at a specific point in
time after a proportion of the mortality (pj,,¢) has occurred (Section 2.3.4). The derivation below shows
that the equations in Chapter 2.3 are appropriate regardless of the proportion assigned to any fleet, which
may differ between fleets. Let’s assume there are two fleets with the mortality from fleet 1 occurring after
three fifths of the natural mortality (p; = 0.6) and the mortality from fleet 2 occurring after one-quarter
of the natural mortality (pp = 0.25). Simplifying the dynamics by ignoring region and sex, and assuming
there is no discard mortality (including only the exploitation rate and selectivity) the catch (in numbers)

for each fleet is

(B.1) Catp=r = NapUpp j=1Sajs, =1 M

(B.2) C]\(t,f:Q = NuuUp,j=2Sapt,j—oe” 02Ma

a

The numbers-at-age in the next year, accounting for fishing mortality by removing the catch at the appro-

priate time, is

a

(B.3) Nyjy1 = |:|:Nt,a€70'25Ma _ Cé\(f:2:| o—(0.6-0.25)My _ CJ\‘/fZI o—(1-0.6)M,

Converting the catch (CV) to exploitation rates using equation B.1 and simplifying produces equation

2.19.
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(B4) Ngpp1 = [[Nt,ae’o'%M“ — NouUle j=2Sapt e~ 025Ma] o—(0.6-0.25) M, _

NojtUpt, p=1Sajt, =€~ " 0Me] o—(1-0.6)M,

(B.5) = [Nyge 0%Mag=03Ma() _ 17 0§ o 0) — NoyUlyp—1 Sapt, pore " 6Ma] e 04Ma
(B.6) = [Niae OMe(1 = Uy j—oSapt, =2) — Na‘tU|t7f:1Sa|t7f:16_0-6Ma] e 0-4Ma
(B.7) = [Npae 06Me(1 - Upt, f=2Salt. =2 — Upt, f=1Sajt.f=1)] o—0-4Ma
(B.8) = Neae M (1= U sSairs)
f

This can be generalized to any set of p|y as long as the proportions are sorted from smallest to largest in

the derivation.
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