

Report on Current and Future Biological and Ecosystem Science Research Activities

PREPARED BY: IPHC SECRETARIAT (J. PLANAS, 30 OCTOBER 2023)

PURPOSE

To provide the Commission with a description of the biological and ecosystem science research projects conducted and planned by the IPHC Secretariat and contemplated within the Five-year Program of Integrated Research and Monitoring (2022-2026).

BACKGROUND

The main objectives of the Biological and Ecosystem Science Research at the IPHC are to:

- 1) identify and assess critical knowledge gaps in the biology of the Pacific halibut;
- 2) understand the influence of environmental conditions; and
- 3) apply the resulting knowledge to reduce uncertainty in current stock assessment models.

The primary biological research activities at IPHC that follow Commission objectives are identified and described in the <u>IPHC Five-Year Program of Integrated Research and Monitoring</u> (2022-2026). These activities are summarized in five broad research areas designed to provide inputs into stock assessment and the management strategy evaluation processes (<u>Appendix I</u>), as follows:

- 1) <u>Migration and Population Dynamics</u>. Studies are aimed at improving current knowledge of Pacific halibut migration and population dynamics throughout all life stages in order to achieve a complete understanding of stock structure and distribution across the entire distribution range of Pacific halibut in the North Pacific Ocean and the biotic and abiotic factors that influence it.
- 2) <u>Reproduction</u>. Studies are aimed at providing information on the sex ratio of the commercial catch and to improve current estimates of maturity.
- 3) <u>Growth</u>. Studies are aimed at describing the role of factors responsible for the observed changes in size-at-age and at evaluating growth and physiological condition in Pacific halibut.
- 4) <u>Mortality and Survival Assessment</u>. Studies are aimed at providing updated estimates of discard mortality rates in the guided recreational fisheries and at evaluating methods for reducing mortality of Pacific halibut.
- 5) <u>Fishing Technology</u>. Studies are aimed at developing methods that involve modifications of fishing gear with the purpose of reducing Pacific halibut mortality due to depredation and bycatch.

DISCUSSION ON THE MAIN RESEARCH ACTIVITIES

1. Migration and Population Dynamics.

The IPHC Secretariat is currently conducting studies on Pacific halibut juvenile habitat and movement through conventional wire tagging, as well as studies that incorporate genomics approaches in order to produce useful information on population structure and distribution

and connectivity of Pacific halibut. The relevance of research outcomes from these activities for stock assessment (SA) resides (1) in the introduction of possible changes in the structure of future stock assessments, as separate assessments may be constructed if functionally isolated components of the population are found (e.g. IPHC Regulatory Area 4B), and (2) in the improvement of productivity estimates, as this information may be used to define management targets for minimum spawning biomass by Biological Region. These research outcomes provide the second and third top ranked biological inputs into SA (Appendix II). Furthermore, the relevance of these research outcomes for the management and strategy evaluation process is in biological parametization and validation of movement estimates, on one hand, and of recruitment distribution, on the other hand (Appendix III).

- 1.1. <u>Estimation of Pacific halibut juvenile habitat</u>. The IPHC Secretariat recently completed a study to investigate the connectivity between spawning grounds and possible settlement areas based on a biophysical larval transport model (<u>Sadorus et al., 2021</u>). Although it is known that Pacific halibut, following the pelagic larval phase, begin their demersal stage as roughly 6-month-old juveniles, settling in shallow nursery (settlement) areas, near or outside the mouths of bays (<u>Carpi et al., 2021</u>), very little information is available on the geographic location and physical characteristics of these areas. In order to fill this knowledge gap, the IPHC Secretariat has initiated studies to identify potential settlement areas for juvenile Pacific halibut throughout IPHC Convention Waters. A first objective of this study is to create a map of suitable settlement habitat by combining available bathymetry information (e.g., benthic sediment composition and shoreline morphological data) and information on recorded presence of age-0, age-1 and age-2 Pacific halibut juveniles as well as absence of young Pacific halibut noted by various nursery habitat projects focused on other flatfish species. Data sources are currently being collected.
- 1.2. <u>Wire tagging of U32 Pacific halibut</u>. The patterns of movement of Pacific halibut among IPHC Regulatory Areas have important implications for management of the Pacific halibut fishery. The IPHC Secretariat has undertaken a long-term study of the migratory behavior of Pacific halibut through the use of externally visible tags (wire tags) on captured and released fish that must be retrieved and returned by workers in the fishing industry. In 2015, with the goal of gaining additional insight into movement and growth of young Pacific halibut (less than 32 inches [82 cm]; U32), the IPHC began wire-tagging small Pacific halibut encountered on the National Marine Fisheries Service (NMFS) groundfish trawl survey and, beginning in 2016, on the IPHC fishery-independent setline survey (FISS). As of 28 July 2022, 1,330 Pacific halibut have been tagged and released on the 2022 IPHC FISS but no tagging was conducted in the NMFS groundfish trawl surveys in 2022. Therefore, a total of 7,441 U32 Pacific halibut have been wire tagged and released on the IPHC FISS and 135 of those have been recovered to date. In the NMFS groundfish trawl surveys through 2019, a total of 6,421 tags have been released and, to date, 78 tags have been recovered.
- 1.3. <u>Population genomics</u>. Understanding population structure is imperative for sound management and conservation of natural resources. Pacific halibut in US and Canadian waters are managed as a single, panmictic population on the basis of tagging studies and historical (pre-2010) analyses of genetic population structure that failed to

demonstrate significant differentiation in the eastern Pacific Ocean. However, more recent studies have reported significant genetic population structure suggesting that Pacific halibut residing in the Aleutian Islands may be genetically distinct from other regions. Advances in genomic technology now enable researchers to examine entire genomes at unprecedented resolution. While genetic techniques previously employed in fisheries management have generally used a small number of markers (i.e. microsatellites, ~10-100), whole-genome scale approaches can now be conducted with lower cost and provide orders of magnitude more data (millions of markers). Using low-coverage whole genome resequencing we have the capability to examine genetic structure of Pacific halibut in IPHC Convention Waters with unprecedented resolution. By studying the genomic structure of spawning populations, genetic signatures of geographic origin can be established and, consequently, could be used to identify the geographic origin of individual Pacific halibut and, therefore, inform on the movement and distribution of Pacific halibut.

The main purpose of the present study is to conduct an analysis of Pacific halibut population structure in IPHC Convention waters using modern high-resolution genomic techniques. Recent studies have reported significant genetic population structure that suggest Pacific halibut residing in the Aleutian Islands may be genetically distinct from other regions. Genetic differentiation of the population on either side of Amchitka Pass was indicated, suggesting a possible basis for separating IPHC Regulatory Area 4B into two management subareas. However, these results were confounded by (1) the use of a small number of genetic markers and (2) the use of samples collected outside of the spawning season (i.e., winter) in some areas. These analyses employed summer-collected (i.e., non-spawning season) samples west of Amchitka Pass which may not be representative of the local spawning population, but rather a mixture of spawning groups on the feeding grounds. Therefore, it is advisable to re-assess those conclusions using samples collected during the spawning season and modern, high-resolution genomic techniques.

In January and February of 2020, the IPHC Secretariat conducted genetic sample collections on either side of Amchitka Pass (IPHC Regulatory Area 4B) during the spawning season to address the limitations of previous studies. These samples, in combination with previous samples collected during the spawning season (i.e., Bering Sea. Central Gulf of Alaska and waters off British Columbia) (Figure 1) will be used to re-evaluate stock structure of Pacific halibut in IPHC Convention waters. The temporal replicates at many of these locations will enable the IPHC Secretariat to evaluate the stability of genetic structure over time, ensuring confidence in the results. The IPHC Secretariat has recently produced a high-guality reference genome and has generated genomic sequences from 570 individual Pacific halibut collected from five geographic areas (Figure 1) using low-coverage whole-genome resequencing (IcWGR). Using the IcWGR approach, we have identified approximately 10.2 million single nucleotide polymorphisms (SNPs) that are currently being used to evaluate population structure at the highest resolution possible. Despite the very high resolution genomic data, our initial analyses of population structure using a genome-wide set of 4.7 million SNPs indicate very little spatial structure among the spawning groups sampled in IPHC convention waters. Since evolutionary processes may not act uniformly across the genome, current

Figure 1. Map of sample collections made during the spawning season used for genomic analysis of population structure in Pacific halibut in the northeast Pacific Ocean.

2. <u>Reproduction</u>.

Research activities in this Research Area aim at providing information on key biological processes related to reproduction in Pacific halibut (maturity and fecundity) and to provide sex ratio information of Pacific halibut commercial landings. The relevance of research outcomes from these activities for stock assessment (SA) is in the scaling of Pacific halibut biomass and in the estimation of reference points and fishing intensity. These research outputs will result in a revision of current maturity schedules and will be included as inputs into the SA (Appendix II) and represent the most important biological inputs for stock assessment. The relevance of these research outcomes for the management and strategy evaluation process is in the improvement of the simulation of spawning biomass in the Operating Model (Appendix III).

Each year, the fishery-independent setline survey (FISS) collects biological data on the maturity of female Pacific halibut that are used in the stock assessment to estimate spawning stock biomass. Currently used estimates of maturity at age using macroscopic visual criteria collected in the FISS indicate that the age at which 50% of female Pacific halibut are sexually mature is 11.6 years on average. However, female maturity schedules have not been revised in recent years and may be outdated. In addition, the currently used macroscopic visual criteria used to score female maturity in the field have an undetermined level of uncertainty and need to be contrasted with more accurate microscopic (i.e., histological) criteria. In order to address these issues, the IPHC Secretariat has conducted for the first time a thorough histological assessment of the temporal progression of female developmental stages and

reproductive phases throughout an entire reproductive cycle (Fish et al. 2020). The outcomes of these studies have paved the way for upcoming studies to update and improve the accuracy of maturity schedules based on histological-based data and to guide efforts towards assessing fecundity in Pacific halibut.

In brief, the results obtained by ovarian histological examination indicate that female Pacific halibut follow an annual reproductive cycle involving a clear progression of female developmental stages towards spawning within a single year. These results provide foundational information for upcoming studies aimed at updating maturity ogives by histological assessment and at investigating fecundity in Pacific halibut (Fish et al. 2022). One of the most important results obtained show that the period of time when gonad samples can be collected in the FISS (June-August) is an appropriate temporal window during which Pacific halibut females that are developing towards the spawning capable reproductive phase and, therefore, considered mature for stock assessment purposes, can be identified.

In 2022, the IPHC Secretariat initiated studies to revise maturity schedules in all four biological regions through histological (i.e., microscopic) characterization of maturity. For that purpose, the IPHC Secretariat collected ovarian samples for histology during the 2022 FISS. The FISS sampling resulted in a total of 1,023 ovarian samples collected coastwide for histological analysis, with 440 ovarian samples from Biological Region 2,351 samples from Biological Region 3, 181 from Biological Region 4, and 51 samples from Biological Region 4B (Figure 2). Ovarian samples have been processed for histology and IPHC Secretariat staff are currently finalizing scoring samples for maturity using histological maturity classifications as previously. Following this maturity classification criteria, all sampled Pacific halibut females will be assigned to either the mature or immature categories. IPHC Secretariat continued to collect ovarian samples in 2023 on the FISS. This will allow us to investigate both spatial and temporal differences in female Pacific halibut maturity. Due to the reduction in FISS design for 2023, sampling efforts only took place in IPHC Biological Regions 2 and 3. A total of 1,110 ovarian samples were collected for histological analysis, with 403 samples from Biological Region 2, and 707 samples from Biological Region 3 (Figure 2). Maturity ogives will be generated by age and length at a coastwide scale as well as at a biological region scale.

Figure 2. Maps of maturity sample collections made during the 2022 (left) and 2023 (right) FISS seasons.

An important existing knowledge gap regarding the reproductive biology of Pacific halibut is the current lack of understanding of fecundity-at-age and fecundity-at-size. Information on these two parameters could be used to replace spawning biomass with egg output as the metric of reproductive capability in the stock assessment and management reference points. The IPHC Secretariat has investigated different available methods for fecundity determinations and the auto-diametric method was selected as the method of choice (Witthames et al., 2009. *Fish. Bul.* 107:148-164). For this purpose, the IPHC Secretariat targeted Biological Region 3 for this collection, with a total of 456 gonad samples collected.

3. <u>Growth</u>.

Research activities conducted in this research area aim at providing information on somatic growth processes driving size-at-age in Pacific halibut. The relevance of research outcomes from these activities for stock assessment resides, first, in their ability to inform yield-per-recruit and other spatial evaluations for productivity that support mortality limit-setting, and, second, in that they may provide covariates for projecting short-term size-at-age and may help delineate between fishery and environmental effects, thereby informing appropriate management responses (Appendix II). The relevance of these research outcomes for the management and strategy evaluation process is in the improvement of the simulation of variability and to allow for scenarios investigating climate change (Appendix III).

The IPHC Secretariat has completed a study funded by the North Pacific Research Board (NPRB Project No. 1704; 2017-2020) to identify relevant physiological markers for somatic growth. This study resulted in the identification of 23 markers in skeletal muscle that were indicative of temperature-induced growth suppression and 10 markers in skeletal muscle that were indicative of temperature-induced growth stimulation. These markers represented genes and proteins that changed both their mRNA expression levels and abundance levels in skeletal muscle, respectively, in parallel with changes in the growth rate of Pacific halibut. A manuscript describing the results of this study is currently in preparation (Planas et al., in preparation).

In addition to temperature-induced growth manipulations, the IPHC Secretariat has conducted similar studies as part of NPRB Project No. 1704 to identify physiological growth markers that respond to density- and stress-induced growth manipulations. The respective justifications for these studies are that (1) population dynamics of the Pacific halibut stock could be affected by fish density, and (2) stress responses associated with capture and release of discarded Pacific halibut may affect subsequent feeding behavior and growth. Investigations related to the effects of density and stress exposure are still underway.

4. Mortality and Survival Assessment.

Information on all Pacific halibut removals is integrated by the IPHC Secretariat, providing annual estimates of total mortality from all sources for its stock assessment (SA). Bycatch and wastage of Pacific halibut, as defined by the incidental catch of fish in non-target fisheries and by the mortality that occurs in the directed fishery (i.e., fish discarded for sublegal size or for regulatory reasons), respectively, represent important sources of mortality that can result in significant reductions in exploitable yield in the directed fishery. Given that the incidental mortality from the commercial Pacific halibut fisheries and bycatch fisheries is included as part of the total removals that are accounted for in the SA, changes in the estimates of incidental mortality will influence the output of the SA and, consequently, the catch levels of the directed fishery. Research activities conducted in this Research Area aim at providing information on discard mortality rates and producing guidelines for reducing discard mortality in Pacific halibut in the longline and recreational fisheries. The relevance of research outcomes from these activities for SA resides in their ability to improve trends in unobserved mortality in order to improve estimates of stock productivity and represent the most important inputs in fishery yield for SA (<u>Appendix II</u>). The relevance of these research outcomes for the management and strategy evaluation process is in fishery parametization (<u>Appendix III</u>).

For this reason, the IPHC Secretariat is conducting two research projects to investigate the effects of capture and release on survival and to improve estimates of DMRs in the directed longline and guided recreational Pacific halibut fisheries:

4.1. Evaluation of the effects of hook release techniques on injury levels and association with the physiological condition of captured Pacific halibut and estimation of discard mortality using remote-sensing techniques in the directed longline fishery.

After having reported on experimentally-derived estimates of discard mortality rate in the directed longline fishery (Loher et al., 2022), the second component of this study investigated the relationships among hook release techniques (e.g., gentle shake, gangion cutting, and hook stripping), injury levels, viability categories, stress levels and physiological condition of released fish, as well as the environmental conditions that the fish experienced during capture. Gentle shake and gangion cutting resulted in the same injury and viability outcomes with 75% of sublegal fish classified in the Excellent viability category, while the hook stripper produced the poorest outcomes (only 9% in the Excellent viability category). Hook stripping also resulted in more severe injuries, particularly with respect to tearing injuries, whereas gentle shake and gangion cutting predominantly resulted in a torn cheek, effectively the injury incurred by the hooking event. Physiological stress indicators (plasma levels of glucose, lactate, and cortisol) did not significant change with viability outcomes, except for higher lactate plasma levels in fish in the Dead viability category. Hematocrit was significantly lower in fish that were classified in the Dead viability category. Furthermore, 89% of fish classified as Dead were infiltrated by sand fleas, present in several sets in deeper and colder waters. Our results indicated that avoiding the use of hook strippers and minimizing soak times in areas known to have high sand flea activity result in better survival outcomes. These results have been summarized in a manuscript that has been submitted for publication in a peer-reviewed journal and that is currently under review.

4.2. Discard mortality rates of Pacific halibut in the charter recreational fishery.

Results from a recent study conducted in fish captured using guided recreational fishery practices yielded an estimated discard mortality rate of 1.35% (95% CI 0.00-3.95%) for Pacific halibut released in Excellent viability category that were captured and released using circle hooks. These results represent the first report of experimentally derived estimates of mortality of Pacific halibut captured and discarded in the recreational

fishery. As with the study on the directed commercial fishery (Section 4.1), work is currently being conducted to investigate the relationship of injury types, viability categories and survival of discarded fish with capture (e.g., environmental parameters, time on deck, hooking time, etc.) and physiological (e.g., stress) conditions.

5. Fishing Technology.

The IPHC Secretariat is conducting studies aimed at developing methods that involve modifications of fishing gear with the purpose of reducing Pacific halibut depredation and bycatch. Specific objectives in this area include 1) investigate new methods for whale avoidance and/or deterrence for the reduction of Pacific halibut depredation by whales (e.g., catch protection methods), and 2) investigate behavioral and physiological responses of Pacific halibut to fishing gear in order to reduce bycatch. Important management implications of these studies reside in improving estimations of mortality of Pacific halibut in the directed commercial fishery that will lead to improved estimates of stock productivity (<u>Appendix II</u>). Depending on the estimated magnitude of whale depredation, this may be included as another explicit source of mortality in the SA and mortality limit setting process.

5.1. <u>Gear-based approaches to catch protection to minimize whale depredation in longline</u> <u>fisheries</u>.

The IPHC Secretariat has conducted investigations on gear-based approaches to catch protection as a means for minimizing whale depredation in the Pacific halibut longline fisheries with funding from NOAA's Bycatch Research and Engineering Program (BREP) (NOAA Award NA21NMF4720534; <u>Appendix IV</u>). The objectives of this study have been to 1) work with fishermen and gear manufacturers, via direct communication and through an <u>international workshop</u>, to identify effective methods for protecting hook-captured flatfish from depredation; and 2) develop and pilot test simple, low-cost catch-protection designs that can be deployed effectively using current longline fishing techniques and on vessels currently operating in Convention waters.

From the outcomes of the first part of the study, two different types of catch protection devices were selected for field testing: one based on a modification of a commercial catch protection device (i.e., shuttle system), and one based on a modification of a slinky pot (i.e., shroud system) deployed on branchline gear.

<u>Shuttle system</u>. Manufactured in Norway by Sago, two aluminum shuttle devices were modeled after the Sago Extreme device but 80% smaller in size (Figure 3). Their dimensions are 2.60 m (8.5 ft) long by 0.80 m (2.6 ft) in diameter, each weighing approximately 100 kg (220 lb.) when empty. Typically, these devices are set with the gear; however, for this study the units were deployed from the surface, during the haulback event. The device encounters the hooks and catch near the seabed, mechanically unhooks fish and entrains them in the storage area (Figure 3). After securing the catch, the device encounters a stopper and is hauled to the surface with fish inside (Figure 3).

Figure 3. Images of the prototype shuttle devices used in this study in profile view (A), frontal view (B) and being hoisted onto the vessel during retrieval (C).

• <u>Shroud system</u>. Several shroud systems were constructed consisting of a modified 'slinky pot' with an opening on one end and a closed end cap on the other that is designed to slide down the branch covering the catch during hauling (Figure 4).

Figure 4. Schematic of shrouded branchline actively fishing on the seabed (A) and a shroud consisting of a modified 'slinky pot' showing end cap and openings (B).

The two different devices were tested off Newport, OR in May of 2023 on a 56' (17m) chartered fishing vessel with an open deck design and typical boom and winch capacity. The focus of the testing was to investigate (1) the logistics of setting, fishing, and hauling of the two pilot catch protection designs, and (2) the basic performance of the gear on catch rates and fish size compared to non-protected gear in the absence of whales.

Pilot testing with the shuttle device consisted of ten sets, each with two 100 hook skates, one acting as a control, and the other equipped with the shuttle. For the shroud system, pilot testing consisted of single sets with six branch lines of 48' affixed on 100' spacing along the groundline. Ten gangions and hooks were snapped to the branch lines on 4' spacing. Three branch lines had a shroud attached and three branch lines acted as controls. Data collected during the pilot testing of the two types of catch protection devices are currently being analyzed.

The IPHC Secretariat recently received funding (BREP, NOAA Award NA23NMF4720414; <u>Appendix IV</u>) for further testing of the shuttle concept in the presence of depredating Orcas in Alaskan waters. This work is planned for 2024 and will allow for further refinements (e.g., attachment protocols, gangion/hook strength),

statistical testing of catch rates, and catch composition (e.g., size ranges, species, catch volume) when using the devices, as well as allow for quantification of removals of fish from non-shuttle treatments by depredating whales.

RECOMMENDATION/S

That the Commission:

1) **NOTE** paper IPHC-2023-IM099-14, which provides a report on current and planned biological and ecosystem science and research activities contemplated in the IPHC's Five-Year Program of Integrated Research and Monitoring (2022-2026).

APPENDICES

- **Appendix I:** Biological research areas in the 5-Year Program of Integrated Research and Monitoring (2022-2026) and ranked relevance for stock assessment and management strategy evaluation (MSE).
- Appendix II: List of ranked research priorities for stock assessment
- **Appendix III:** List of ranked research priorities for management strategy evaluation (MSE)
- Appendix IV: Summary of awarded research grants current in 2023

APPENDIX I

Biological research areas in the 5-Year Program of Integrated Research and Monitoring (2022-2026) and ranked relevance for stock assessment and management strategy evaluation (MSE)

Research areas	Research activities	Research outcomes	Relevance for stock assessment	Relevance for MSE	Specific analysis input	SA Rank	MSE Rank	Research priorization
Migration and population dynamics	Population structure	Population structure in the Convention Area	Altered structure of future stock assessments		If 4B is found to be functionally isolated, a separate assessment may be constructed for that IPHC Regulatory Area	2. Biological input	1. Biological parameterization and validation of movement	2
	Distribution	Assignment of individuals to source populations and assessment of distribution changes	Improve estimates of productivity	Improve parametization of the Operating Model	Will be used to define management targets for minimum spawning biomass by Biological Region	3. Biological input		2
	Larval and juvenile connectivity studies	Improved understanding of larval and juvenile distribution	Improve estimates of productivity		Will be used to generate potential recruitment covariates and to inform minimum spawning biomass targets by Biological Region	3. Biological input	1. Biological parameterization and validation of movement estimates	2
Reproduction	Histological maturity assessment	Updated maturity schedule	Scale biomass and reference point estimates	Improve simulation of spawning biomass in the Operating Model	Will be included in the stock assessment, replacing the current schedule last updated in 2006			1
	Examination of potential skip spawning	Incidence of skip spawning			Will be used to adjust the asymptote of the maturity schedule, if/when a time- series is available this will be used as a direct input to the stock assessment	1. Biological		1
	Fecundity assessment	Fecundity-at-age and -size information			Will be used to move from spawning biomass to egg-output as the metric of reproductive capability in the stock assessment and management reference points	input		1
	Examination of accuracy of current field macroscopic maturity classification	Revised field maturity classification			Revised time-series of historical (and future) maturity for input to the stock assessment			1
Growth	Evaluation of somatic growth variation as a driver for changes in size-at-age	Identification and application of markers for growth pattern evaluation		Improve simulation of variability and allow for scenarios investigating climate change	May inform yield-per-recruit and other spatial evaluations of productivity that support mortality limit-setting		3. Biological parameterization and validation for growth projections	5
		Environmental influences on growth patterns	Scale stock productivity and reference point estimates		May provide covariates for projecting short-term size-at-age. May help to delineate between effects due to fishing and those due to environment, thereby informing appropriate management response			5
		Dietary influences on growth patterns and physiological condition			May provide covariates for projecting short-term size-at-age. May help to deleineate between effects due to fishing and those due to environment, thereby informing appropriate management response			5
	Discard mortality rate estimate: longline fishery	Experimentally-derived		Improve estimates of stock productivity	Will improve estimates of discard mortality, reducing potential bias in stock assessment results and management of mortality limits	- 1. Fishery yield	1. Fishery parameterization	4
Mortality and survival assessment	Discard mortality rate estimate: recreational fishery	DMR	Improve trends in unobserved mortality		Will improve estimates of discard mortality, reducing potential bias in stock assessment results and management of mortality limits			4
	Best handling and release practices	Guidelines for reducing discard mortality			May reduce discard mortality, thereby increasing available yield for directed fisheries	2. Fishery yield		4
Fishing technology	Whale depredation accounting and tools for avoidance	New tools for fishery avoidance/deterence; improved estimation of depredation mortality	Improve mortality accounting	Improve estimates of stock productivity	May reduce depredation mortality, thereby increasing available yield for directed fisheries. May also be included as another explicit source of mortality in the stock assessment and mortality limit setting process depending on the estimated magnitude	1. Assessment data collection and processing		3

APPENDIX II

List of ranked research priorities for stock assessment

SA Rank	Research outcomes	Relevance for stock assessment	Specific analysis input	Research Area	Research activities
1. Biological input	Updated maturity schedule		Will be included in the stock assessment, replacing the current schedule last updated in 2006		Histological maturity assessment
	Incidence of skip spawning	Scale biomass and	Will be used to adjust the asymptote of the maturity schedule, if/when a time-series is available this will be used as a direct input to the stock assessment		Examination of potential skip spawning
	Fecundity-at-age and -size information	reference point estimates	Will be used to move from spawning biomass to egg-output as the metric of reproductive capability in the stock assessment and management reference points	Reproduction	Fecundity assessment
	Revised field maturity classification		Revised time-series of historical (and future) maturity for input to the stock assessment		Examination of accuracy of current field macroscopic maturity classification
2. Biological input	Stock structure of IPHC Regulatory Area 4B relative to the rest of the Convention Area	Altered structure of future stock assessments	If 4B is found to be functionally isolated, a separate assessment may be constructed for that IPHC Regulatory Area		Population structure
3. Biological	Assignment of individuals to source populations and assessment of distribution changes	Improve estimates	Will be used to define management targets for minimum spawning biomass by Biological Region	Migration and population dynamics	Distribution
input	Improved understanding of larval and juvenile distribution	of productivity	Will be used to generate potential recruitment covariates and to inform minimum spawning biomass targets by Biological Region		Larval and juvenile connectivity studies
1. Assessment data collection	Sex ratio-at-age	Scale biomass and	Annual sex-ratio at age for the commercial fishery fit by the stock assessment	Reproduction	Sex ratio of current commercial landings
and processing	Historical sex ratio-at-age	fishing intensity	Annual sex-ratio at age for the commercial fishery fit by the stock assessment	Reproduction	Historical sex ratios based on archived otolith DNA analyses
2. Assessment data collection and processing	New tools for fishery avoidance/deterence; improved estimation of depredation mortality	Improve mortality accounting	May reduce depredation mortality, thereby increasing available yield for directed fisheries. May also be included as another explicit source of mortality in the stock assessment and mortality limit setting process depending on the estimated magnitude	Fishing technology	Whale depredation accounting and tools for avoidance
1. Fishery yield	Physiological and behavioral responses to fishing gear	Reduce incidental mortality	May increase yield available to directed fisheries	Fishing technology	Biological interactions with fishing gear
2. Fishery yield	Guidelines for reducing discard mortality	Improve estimates of unobserved mortality	May reduce discard mortality, thereby increasing available yield for directed fisheries	Mortality and survival assessment	Best handling practices: recreational fishery

APPENDIX III

List of ranked research priorities for management strategy evaluation (MSE)

MSE Rank	MSE Rank Research outcomes		Research Area	Research activities	
1. Biological parameterization and	Improved understanding of larval and juvenile distribution	Improve parametization of the	Migration and population	Larval and juvenile connectivity studies	
validation of movement estimates	Stock structure of IPHC Regulatory Area 4B relative to the rest of the Convention Area	Operating Model		Population structure	
2. Biological parameterization and	Assignment of individuals to source populations and assessment of distribution changes	Improve simulation of recruitment variability and parametization of recruitment distribution in the Operating Model	dynamics	Distribution	
validation of recruitment variability and distribution	Establishment of temporal and spatial maturity and spawning patterns	Improve simulation of recruitment variability and parametization of recruitment distribution in the Operating Model	Reproduction	Recruitment strength and variability	
3. Biological parameterization and validation for growth	Identification and application of markers for growth pattern evaluation Environmental influences on growth patterns	Improve simulation of variability and allow for scenarios	Growth	Evaluation of somatic growth variation as a driver for changes in size-at-age	
projections	Dietary influences on growth patterns and physiological condition	investigating climate change			
1. Fishery parameterization Experimentally-derived DMRs		Improve estimates of stock productivity	Mortality and survival assessment	Discard mortality rate estimate: recreational fishery	

APPENDIX IV

Summary of awarded research grants current in 2023

Project #	Grant agency	Project name	PI	Partners	IPHC Budget (\$US)	Management implications	Grant period		
1	Bycatch Reduction Engineering Program- NOAA	Gear-based approaches to catch protection as a means for minimizing whale depredation in longline fisheries (NOAA Award Number NA21NMF4720534)	ІРНС	Deep Sea Fishermen's Union, Alaska Fisheries Science Center-NOAA, industry representatives	\$99,700	Mortality estimations due to whale depredation	November 2021 – October 2023		
2	North Pacific Research Board	Pacific halibut population genomics (NPRB Award No. 2110)	IPHC	Alaska Fisheries Science Center- NOAA	\$193,685	Stock structure	February 2022 – January 2024		
3	Bycatch Reduction Engineering Program- NOAA	Full scale testing of devices to minimize whale depredation in longline fisheries (NOAA Award Number NA23NMF4720414)	IPHC	Alaska Fisheries Science Center- NOAA	\$199,870	Mortality estimations due to whale depredation	November 2023 – April 2025		
Total awarded (\$)						\$493,255			