INTERNATIONAL PACIFIC

IPHC 5-year Biological and Ecosystem Science Research Plan: Update

Agenda Item 7.3 IPHC-2020-IM096-10

R

SEAR

Outline

- Five-year biological and ecosystem science research program and management implications
- Progress on ongoing research projects
- Externally-funded collaborative research projects

Integration of biological research, stock assessment, and policy

Five-year research program and management implications (2017-2021)

5-Year Biological and Ecosystem Science Research Plan

Primary Research Areas	Main Objectives	Management implications
Migration	Improve understanding of migration throughout all life stages (larval, juvenile, adult feeding and reproductive migrations)	Stock distribution, regional management
Reproduction	Information on sex ratios of commercial landings and improved maturity estimates	Female stock spawning biomass
Growth	Improve understanding of factors responsible for changes in size-at-age and development of tools for monitoring growth and physiological condition	Biomass estimates
DMRs and discard survival	Improve estimates of DMRs in the directed longline and guided recreational fisheries	Discard mortality estimates
Genetics and genomics	Improve understanding of the genetic structure of the population and create genomic tools (genome)	Stock distribution, local adaptation

Next 5-Year Research Plan (2021-26) in development

Outline

- Five-year research program and management implications
- Progress on ongoing research projects
 - 1. Migration and Distribution
 - 2. Reproduction
 - 3. Growth
 - 4. DMRs and Survival Assessment
 - 5. Genetics and Genomics

1. Migration and Distribution

1. Larval and early juvenile dispersal

- Key findings:
 - Aleutian Islands constrain connectivity, but large island passes act as conduits between the GOA and Bering Sea
 - Degree of inter-basin larval connectivity is influenced by spawning location.

Percentage of model larvae reaching the **Bering Sea** based on IBM:

	Spawn	Year								
	region		Warm		Cold					
		2003	2004	2005	2009	2010	2011			
BS	1	100	100	100	100	100	100			
	Ž	58.0	51.1	58.1	52.7	51.5	47.0			
GOA	3	17.6	19.3	15.2	17.2	17.2	20.5			
00/1	4	8.6	4.5	8.2	4.5	7.0	6.5			
	5	0.2	0.04	0.6	0.08	1.6	0.04			

1. Migration and Distribution

1. Larval and early juvenile dispersal

- Key findings:
 - Aleutian Islands constrain connectivity, but large island passes act as conduits between the GOA and Bering Sea
 - Degree of inter-basin larval connectivity is influenced by spawning location
 - Large degree of intra-basin connectivity

140°W

1. Migration and Distribution

1. Larval and early juvenile dispersal

- Key findings:
 - Aleutian Islands constrain connectivity, but large island passes act as conduits between the GOA and Bering Sea
 - Degree of inter-basin larval connectivity is influenced by spawning location.
 - Large degree of within-basin connectivity
 - Demersal stage fish in the Bering Sea migrate outward from Bristol Bay and reach Unimak Pass by age-4, widely dispersed by age-6

<u>Sadorus</u>, L. L., Goldstein, E., <u>Webster</u>, R. A., Stockhausen, W. T., <u>Planas</u>, J. V., and Duffy-Anderson, J. 2020. **Multiple life-stage connectivity of Pacific halibut** (*Hippoglossus stenolepis*) across the Bering Sea and Gulf of Alaska. *Fisheries Oceanography. (In Press).*

CPUE

1. Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

1. Identification of sex in historical commercial landings

DNA Extraction from Archived Otoliths: Current Progress

Storage Type	<u>n</u>	<u># Successful</u> <u>Genotypes</u>
Dry	7	7
Glycerin	10	0

- Extractions via Qiagen column kits w/ DTT added, low elution volume
- PCR performed w/ BSA, extended cycle number
- No nanodrop signature present for glycerin-stored samples

Other potential issues:

- All otoliths collected prior to 2003 stored in glycerin in batches, not individually
- Glycerin solution sometimes reused
- Some otoliths cleaned in muriatic acid

2. Full characterization of the annual reproductive cycle to improve current estimates of maturity

Objective: Revise maturity estimates for male and female Pacific halibut

2017 2018 **30**♀ / **30** ♂

Reproductive cycle

- Accurate staging of reproductive status
- Updated maturity-at-age estimates
- Information on fecundity and skip-spawning

Microscopic maturity staging: Oocyte stage classification by histology

Growth phase	Developmental										
(acronym)	stage (acronym)	Description	Photo	(a) I	Drimory		Sacandary		Oparita		
Primary Growth (PG)	One nucleolus (PGon)	Oocytes are small, angular, and compact with a single large nucleolus. Cytoplasm stains dark purple.		0 - ي OMgm -	Growth	 	Growth	 	Maturation		-
	Perinucleolar (PGpn)	Oocytes are larger and rounder than PGon and nuclei develop and flatten around the nucleus. Cytoplasm stains light purple.		- Bugs Scyte stag	_	 	d	 			
	Cortical alveolar (PGca)	First cortical alveoli appear as white stain in the periphery of the oocyte.		PGca - PGpn - PGon -		•+ 		 			
Secondary Growth (SG)	Early (SGe)	Yolk globules first appear at the periphery, stain pink, and fill inwards occupying up to 1/3 of the cytoplasm.		0 500 1000 1500 2000 Oocyte diameter (microns)							
	Late (SG <i>l</i>)	Yolk globules transition from only the periphery of the ooplasm and fill inwards to the nucleus.	500 um		Female on the	e repi stage	roductive e of the m	phas ost a	se determi advanced	ined based oocytes	ł
	Full Grown (SGfg)	Yolk globules completely fill the ooplasm to the central nucleus and coalesce into larger yolk globules.		• Pac	ific hal	ibut	is a batc varian d	h-sr evel	bawner w	vith a gro	oup-
Oocyte	Germinal vesicle	The nucleus begins to migrate through a cytoplasm fully filled		Oyn			variari a		opmonie	a pattorn	
(OM)	(OMgm)	with large yolk globules.	Fish, T.	, Wolf, N., I	Harris, B.	. P. , a	nd <u>Planas</u>	, J. V	′. 2020. A (compreher	nsive
	Periovulatory	Nucleus no longer visible and	descrip	otion of oo	cyte dev	/elopi	nental sta	iges	in Pacific	halibut,	
	(OMpo)	a central yolk mass. Oocyte is still within the follicle wall.	Hippog	glossus ste	enolepis	. Jour	nal of Fish	Biol	ogy. (In Pre	ess).	

Microscopic maturity staging: based on histological oocyte stages

Macroscopic maturity staging: based on field visual observation

2017-2020: Temporal analysis of maturity (Portlock region)

Full annual collection (2018)

 Interannual collection June 2017, 2018, 2019, 2020

2020: Spatial analysis of maturity (Gulf of Alaska)

3. Growth

1. Identification and validation of physiological markers for growth

3. Growth

1. Identification and validation of physiological markers for growth

Increased

growth rate

IPHC

Arginine--tRNA ligase ovtonlasmic OS-Rattus nonvegi Asparagine synthetase [glutamine-hydrolyzing] OS=R ATP-binding cassette sub-family Emember 1 US=IVIUS Carboxypeptidase A5 OS=Mus musculus GN=Cpa5 PE= Collagen alpha-1(V) chain OS=Mus musculus GN=Col5a Collagen alpha-2(I) chain (Fragments) OS=Gallus gallus Collagen alpha-6(VI) chain OS=Homo sapiens GN=COL Coronin-1A OS=Homo sapiens GN=CORO1A PE=1 SV=4 Elongation factor 1-delta OS=Xenopus laevis GN=eef1 Eukaryotic translation initiation factor 2 subunit 2 OS= Eukarvotic translation initiation factor 3 subunit J-A O **Growth** Eukaryotic translation initiation factor 4 gamma 2 OS=I Glycine--tRNA ligase OS=Homo sapiens GN=GARS PE=: Markers Heat shock 70 kDa protein 4 OS=Canis lupus familiaris Heat shock protein beta-11 OS=Danio rerio GN=hspb1 Histone-lysine N-methyltransferase SETD7 OS=Danio Importin-13 OS=Pongo abelii GN=IPO13 PE=2 SV=1 Influenza virus NS1A-binding protein homolog A OS= Kelch-like protein 10 OS=Homo sapiens GN=KLHL10 PE Myozenin-2 OS=Pongo abelii GN=MYOZ2 PE=2 SV=1 N-alpha-acetyltransferase 38 NatC auxiliary subunit C Ornithine carbamoyltransferase, mitochondrial OS= Peptidyl-prolyl cis-trans isomerase FKBP7 OS=Mus mu Phenylalanine--tRNA ligase alpha subunit OS=Danio re Phosphoserine aminotransferase OS=Mus musculus G Protein BCCIP homolog OS=Danio rerio GN=bccip PE=2 Troponin I, fast skeletal muscle OS=Orvctolagus cunicu Jbiguitin carboxyl-terminal hydrolase isozyme L1 O inconventional myösin-vi US=Homo sapiens Giv=iv

Decreased growth rate

 Identify common genes and proteins in muscle that change with changes in growth rate

↑ Growth Markers

	60S ribosomal protein L22 OS=Ictalurus punctatus GN=rpl22 PE=2 SV=3
	Asparagine synthetase [glutamine-hydrolyzing] OS=Gallus gallus GN=ASNS
1	Collagen alpha-3(VI) chain OS=Gallus gallus GN=COL6A3 PE=2 SV=2
	Immunoglobulin-like and fibronectin type III domain-containing protein 10
	Leucine-rich repeat-containing protein 2 OS=Homo sapiens GN=LRRC2 PE=2
	Methionine aminopeptidase 2 OS=Homo sapiens GN=METAP2 PE=1 SV=1
	Ornithine carbamoyltransferase, mitochondrial OS=Homo sapiens GN=OTC
	Prolyl 4-hydroxylase subunit alpha-2 OS=Caenorhabditis elegans GN=phy-2
	Titin OS=Homo sapiens GN=TTN PE=1 SV=4
	Ubiquitin carboxyl-terminal hydrolase 25 OS=Homo sapiens GN=USP25 PE=:

INTERNATIONAL PACIFIC HALIBUT COMMISSION

Slide 17

3. Growth

1. Identification and validation of physiological growth markers for adult Pacific halibut

- 44 adult Pacific halibut in captivity in Seward, AK (collaboration with Alaska Pacific University)
- Establishment of different growth rates through dietary manipulation
- Validation of physiological growth markers to infer growth patterns (slow versus fast growth) in adult Pacific halibut

Slow growth rate?

Fast growth rate?

INTERNATIONAL PACIFIC HALIBUT COMMISSION IPHC

- 1. <u>Directed longline fishery</u>: A. Relationship between handling practices and injury levels and physiological condition of released Pacific halibut
 - Assessed *injuries* and *release condition* associated with release techniques (careful shake, gangion cut, hook stripping).
 - Injury evaluation

- Physiological condition of released fish
 - Condition factor indices

- Capture conditions

NOAAFISHERIES Saltonstall – Kennedy Grant NA17NMF4270240

INTERNATIONAL PACIFIC HALIBUT COMMISSION

- 1. <u>Directed longline fishery</u>: A. Relationship between handling practices and injury levels and physiological condition of released Pacific halibut
 - Continuing Analysis: Relationships of individual (physiological, fitness) and environmental (time out of water, soak time, temperature differences etc.) traits on release viability

2. Guided recreational fishery: Estimation of DMRs

Objectives:

2019 1. Collect information on hook types and sizes and handling practices

Results:

- 1. 75% Circle Hooks / 25% Jigs (J-hook)
- 2. Hook removal: 54% reverse the hook40% twist with gaff
- 3. Fish Handling upon release:
 - a) Body and tail supported (65%)
 - b) Operculum (10%
 - c) Tail only (10%)

Survey: Dock-side interviews (n=51)
→ Reg. Area 2C: Sitka (n=16), Juneau (n=8)
- Reg. Area 3A: Homer (n=12), Seward (n=15)

2. Guided recreational fishery: Estimation of DMRs

- Project initiated in 2019

Objectives (cont'd):

1. Investigate the relationship between gear types and capture conditions and size composition of captured fish

2021 Field Experiment

- 2. Injury profiles and physiological stress levels of captured fish
- 3. Assessment of mortality of discarded fish

Hook injury assessment

5. Genetics and Genomics

Completed sequence of the Pacific halibut genome

- Size: 594 million base pairs
- 24 chromosomes
- 27,422 genes
- 91 X coverage

NIH U.S. National Library of Medicine	NCBI National Center for Biotechnology Information
	Hint: For a larger view of the graphical panel, click on the blue ≪ to hide the left sidebar, or press the '[' key.
Genome Data Viewer	
Hippoglossus stenolepis (Pacific halibut)	Assembly: IPHC_HISten_1.0 (GCF_013339905.1) • Chr 23 (NC_048949.1) •
Search assembly Q glycoprotein hormone subunit alpha Examples ►	K NC_048949.1: 10,057,926 - 10,061,402
Ideogram View Unplaced/unlocalized scaffolds: 95	Gene Transcript Exostr click an exon to zoom in, mouse over to see details Region v () gpha2 v ()
1 2 3 4 5 6 7 8 9 10 11 12 13 14	🔄 🗧 NC_048949.1 • 🗘 🗘 🔍
) 10.653 K 10.653,200 10.653,200 10.653,600 10.653,600 10.653,600 10.653,200 10.653,400 10.653,600 10.650,600 10.653,600 10.653,600 10.653,600 10.653,6
	NUCSSI492891 >>> RNA-seq exon coverage, aggregate (filtered), NCBI Hippoglossus stenolepis Annotation Release 100 - log base 2 scaled 112 16
16 16 17 18 19 20 21 22 23 24 MT	RNA-seq intron-spanning reads, aggregate (filtered), NCBI Hippoglossus stenolepis Annotation Release 100 - log base 2 scaled 78
ĴĴĴĴŨŨŨŨŬŎ	RNA-seq intron features, aggregate (filtered), NCBI Hippoglossus stenolepis Annotation Relea. 📷 📷

https://www.ncbi.nlm.nih.gov/assembly/GCA_013339905.1

INTERNATIONAL PACIFIC HALIBUT COMMISSION **IPHC**

5. Genetics and Genomics

Revise our understanding of genetic structure of the Pacific halibut population in the Northeastern Pacific Ocean

Analysis of structure in IPHC Regulatory Area 4B

5. Genetics and Genomics

Analysis of genetic variability among juvenile Pacific halibut in the Bering Sea and the Gulf of Alaska

- Infer the potential contribution of fish spawned in different areas to the Gulf of Alaska (GOA) and Bering Sea (BS)
- Fin clips collected during NMFS trawl surveys
 - Gulf of Alaska (2015, 2017, 2019)
 - Bering Sea (2015-2019)
- Compare genetic diversity metrics between GOA & BS
- Estimate admixture proportions

Outline

- Five-year research program and management implications
- Progress on ongoing research projects
- Externally-funded collaborative research projects

Externally-funded collaborative research

Project #	Grant agency	Project name	PI	Partners	IPHC Budget (\$US)	Management implications	Grant period	
1	Saltonstall-Kennedy NOAA	Improving discard mortality rate estimates in the Pacific halibut by integrating handling practices, physiological condition and post- release survival (<i>Award No. NA17NMF4270240</i>)	IPHC	Alaska Pacific University	\$286,121	Discard estimates	September 2017 – August 2020	
2	North Pacific Research Board	Somatic growth processes in the Pacific halibut (<i>Hippoglossus stenolepis</i>) and their response to temperature, density and stress manipulation effects (<i>NPRB Award No. 1704</i>)	IPHC	AFSC-NOAA-Newport, OR	\$131,891	Changes in biomass/size- at-age	September 2017 – February 2020	
3	National Fish and Wildlife Foundation	Discard mortality rate characterization in the Pacific halibut recreational fishery (<i>NFWF Award No. 61484)</i>	IPHC	UA Fairbanks, APU, Grey Light Fisheries, Alaska Charter Association	\$98,901	Discard estimates	April 2019 - June 2021	
	Total awarded (\$) \$516,913							

INTERNATIONAL PACIFIC

INTERNATIONAL PACIFIC HALIBUT COMMISSION

