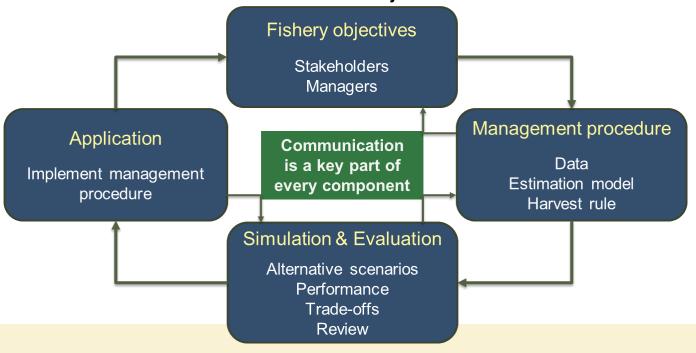


Program of Work

AM095 (2019): Results on Scale

AM096 (2020): Update on Distribution and Scale

AM097 (2021): Results on Distribution and Scale


Outline

- Biological and fishery objectives related to Scale
- Results on Scale
- Update on Distribution

Management Strategy Evaluation (MSE)

a process to evaluate harvest strategies and develop a management procedure that is robust to uncertainty and meets defined objectives

Primary Biological objectives

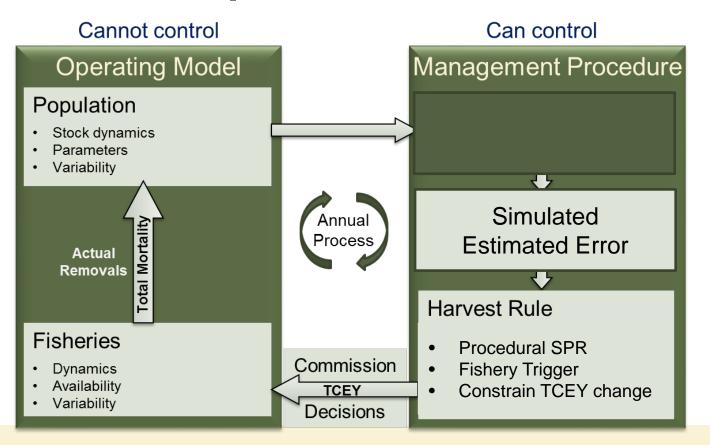
- 1.1. The primary objective is to avoid a critical biomass below which the stock may not recover
 - No more than a 10% risk of being below
 - 20% of the dynamic unfished equilibrium biomass
 - Long-term (and short-term is of interest)

Short-term: 4-13 years | Medium-term: 14-23 years

Long-term: Equilibrium

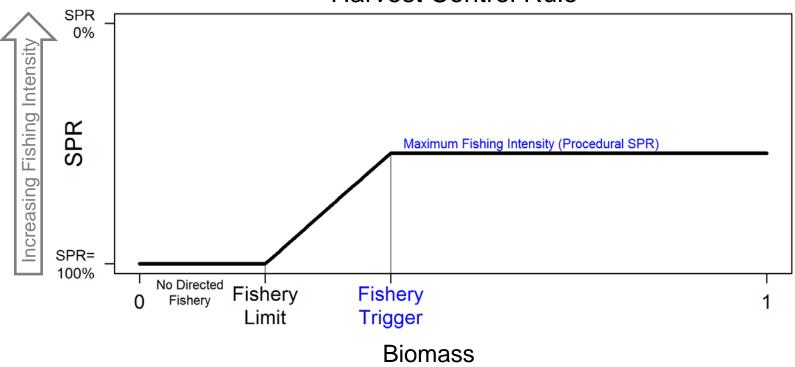
Primary Fishery objectives

- 2.1. Limit annual changes in the TCEY
 - No more than a 25% risk of being above
 - 15% Average Annual Variability (AAV)
 - Short-term (and long-term is of interest)
- 2.2. Maintain a minimum TCEY
 - Not sure what that minimum is or a tolerance
- 2.3. Maximize TCEY subject to above


Prioritized objectives

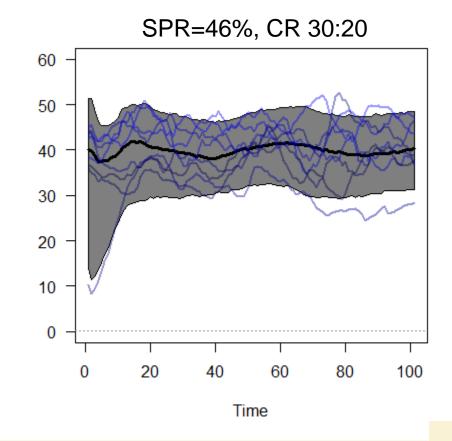
- Must meet long-term Biological Sustainability (1.1)
- Then meet short-term catch limit stability (2.1) and maintain a minimum catch limit (2.2)
- Then maximize short-term fishery yield subject to above

- Statistics of interest can be informative and benefit the evaluation
 - For example. P(SB<30%), median AAV, or quantiles


Closed-loop simulation framework

Scale Management Procedure

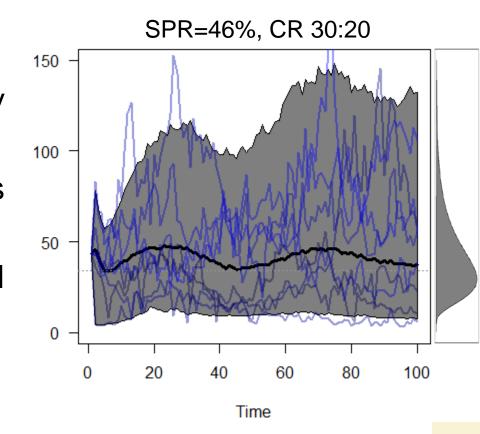
Harvest Control Rule



Simulated trajectories (spawning biomass)

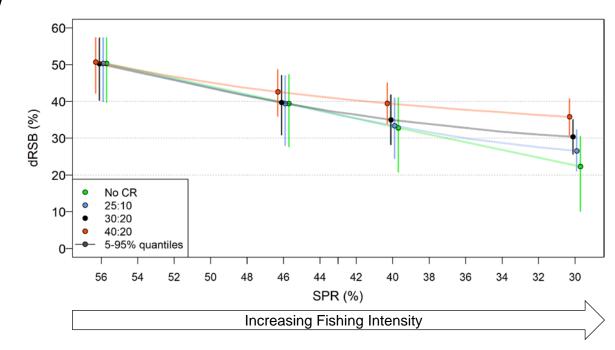
Reminder

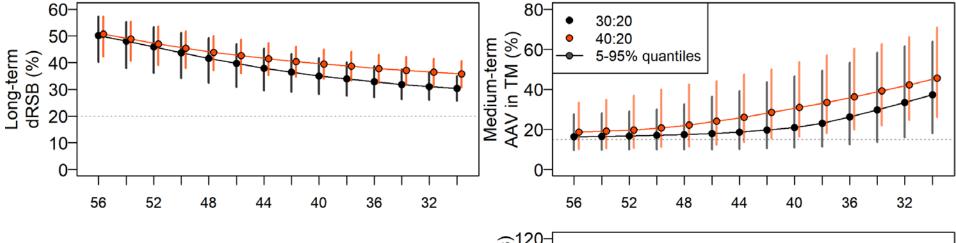
- Goal of MSE is to evaluate MPs for robustness given possible scenarios (strategic)
- Goal of assessment is to predict past, now, and immediate future (tactical)



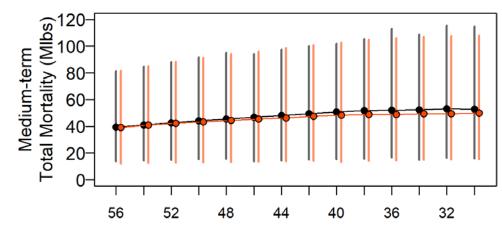
Simulated trajectories (total mortality)

Variability

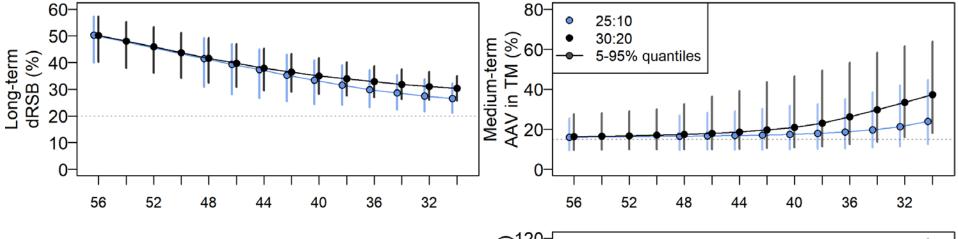

- The population is inherently variable
- Estimation error contributes to majority of the variability
- SPR-based rule adjusts TM according to this variability


Effect of the control rule (CR)

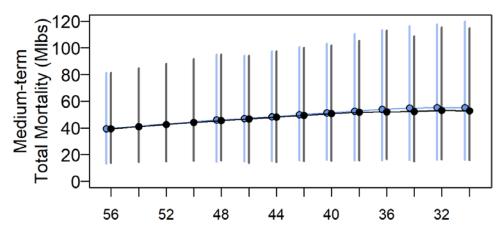
- Similar biomass at low fishing intensity (FI)
- Higher biomass at high FI with CR
- The combination of SPR and CR determines average biomass level
- Lower risk of low biomass with CR



Performance metrics (40:20 & 30:20)



- Bio objective satisfied for all procedures
- AAV objective not satisfied for all procedures
- Median TM increases slightly and range increases with FI


SPR (%) Slide 13

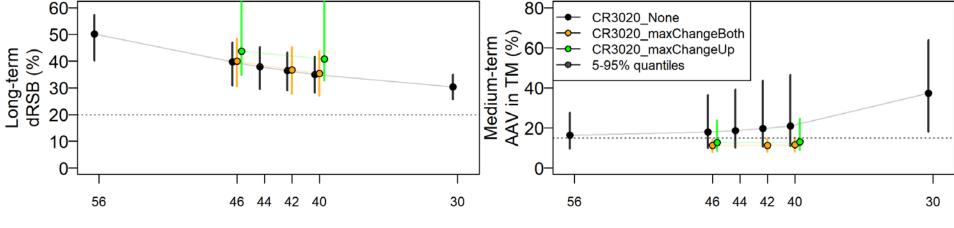
Performance metrics (25:10 & 30:20)

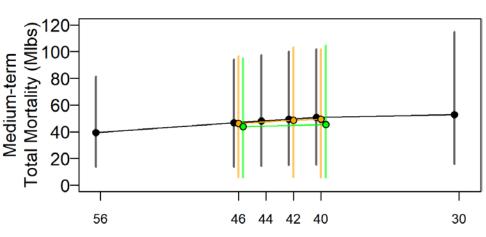
SPR (%)

- Bio objective satisfied for all procedures
- AAV objective not satisfied for all procedures (but lower)
- Median TM slightly higher for 25:10 CR

Slide 14

Constrained Management Procedures


- MaxChangeBoth
 - TM constrained to change no more than 15% up or down
- MaxChangeUp
 - TM constrained to change no more than 15% up, but full down
- SlowUpFastDown
 - TM constrained to increase 1/3rd of amount to procedure TM
 - TM constrained to decrease 1/2 of amount to procedure
- SlowUpFullDown
 - TM constrained to increase 1/3rd of amount to procedure TM
- Cap
 - TM cannot exceed the maximum (60 Mlbs or 80Mlbs)


All use a

30:20 control rule

Performance metrics: Max Change

- Bio objective satisfied by all
- AAV reduced and maxChangeBoth meets objective
- maxChangeUp results in lost yield

SPR (%)

Slide 16

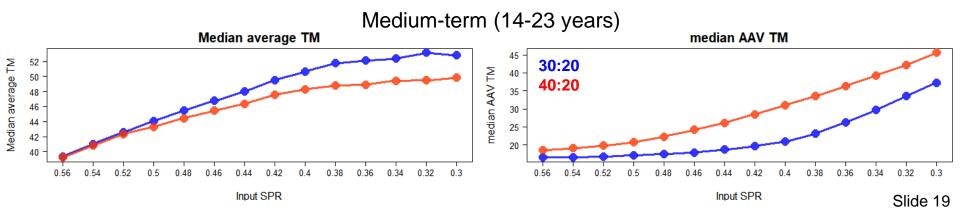
Constrained MPs

Max Change

- Has potential, but should examine conservation risk and potential for lost yield and fishery closures
- Slow-up, fast or full down
 - Has potential, but should examine conservation risk and potential for fishery closures

Caps

- Reduced AAV when stock at high levels, similar AAV when at low levels
- Possibly increase median yield, but do not take advantage of very high yield opportunities


Summary of scale evaluations

- All MPs with SPR greater than 40% met the long-term biological sustainability objective
 - Short-term biological risks were greater and many MPs showed a greater risk than tolerable (>10%)
- Only some constrained MPs met the variability objective
 - Only maxChangeBoth met this for the short-term
- Median TM differed slightly between MPs, and showed a wide range

Scale outcomes

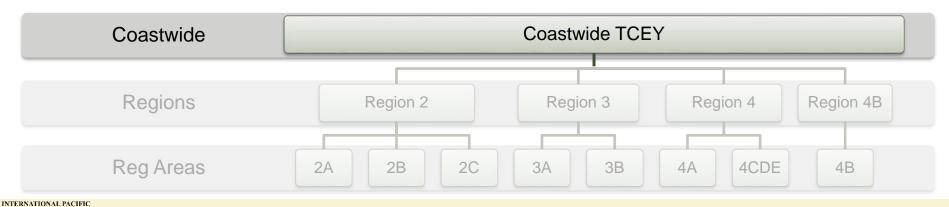
- Some investigation of control rules may be useful
- A constraint may increase conservation risk, but would reduce mortality limit variability
- At SPR values lower than 40%
 - median mortality limit showed minimal increase
 - the variability in the mortality limit increased more quickly

Objectives

- Some discussion in the MSAB was about being comfortable keeping the stock around a specific biomass
 - An unstated biological objective

MSE Explorer

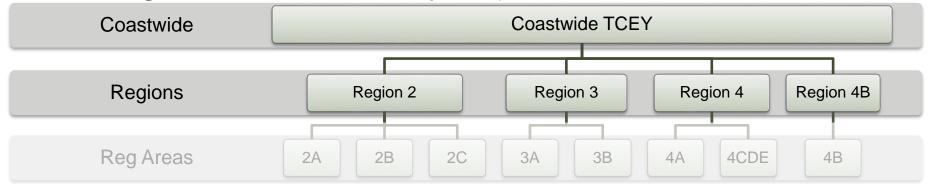
- View the results and make comparisons
- Create tables that can be downloaded
- Create plots that can be saved


http://bit.ly/iphc-msab012

A procedure for distributing the TCEY (1)

Coastwide Target Fishing Intensity

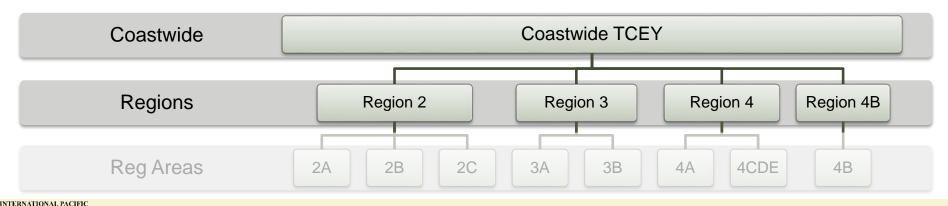
- Determine coastwide Total Mortality from Scale MP
- Separate TM into O26 (TCEY) and U26 components



A procedure for distributing the TCEY (2)

Regional Stock Distribution

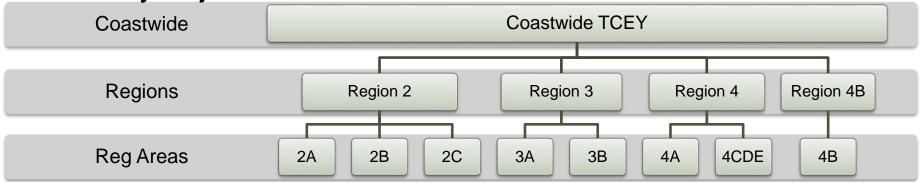
- Distribute the coastwide TCEY to biologically-based Regions
 - Use proportion of the stock estimated in each Region for "all sizes"
 WPUE index from IPHC fishery-independent setline survey
- Biological Sustainability objectives



A procedure for distributing the TCEY (3)

Regional Allocation Adjustment

- Adjust the distribution of the TCEY among Regions
 - For example, use relative target harvest rates by Region
- Biological Sustainability and Fishery objectives

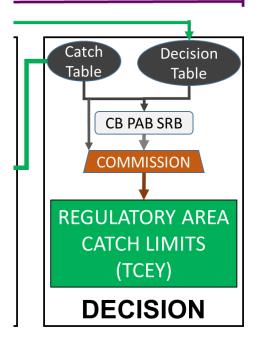


A procedure for distributing the TCEY (4)

Regulatory Area Allocation

- Apply allocation percentages for each Regulatory Area within a Region
- Based on policy, data, observations, or agreement

Fishery objectives



Decision-Making

Annual Regulatory Area Adjustment

- Adjust Regulatory Area TCEY's to account for other factors as needed
- This step may deviate from the management procedure
 - Will have unpredictable consequences
 - The policy part of the harvest strategy policy

INTERNATIONAL PACIFIC

http://bit.ly/iphc-msab012

Primary Biological and Fishery objectives						
GENERAL OBJECTIVE	MEASURABLE OBJECTIVE	MEASURABLE OUTCOME	TIME-FRAME	Tolerance	PERFORMANCE METRIC	
1.1. KEEP BIOMASS ABOVE A LIMIT TO AVOID CRITICAL STOCK SIZES Biomass Limit	Maintain a minimum female spawning stock biomass above a biomass limit reference point at least 90% of the time	SB < Spawning Biomass Limit (SB _{Lim}) SB _{Lim} =20% spawning biomass	Long-term	0.10	$P(SB < SB_{Lim})$	

Long-term

Short-term

Long-term

Short-term

0.25

??

??

P(AAV > 15%)

P(TCEY

 $< TCEY_{min}$)

Average Annual

Coastwide TCEY <

TCEY_{min}

Variability (AAV) > 15%

Limit annual

changes in the

coastwide TCEY

Maintain TCEY

minimum level

above a

coastwide

2.1 LIMIT CATCH

VARIABILITY

2.2 MAXIMIZE

FISHING YIELD

DIRECTED

Primary Biological and Fishery objectives						
GENERAL OBJECTIVE	MEASURABLE OBJECTIVE	MEASURABLE OUTCOME	TIME-FRAME	Tolerance	PERFORMANCE METRIC	
1.1. KEEP BIOMASS ABOVE A LIMIT TO AVOID CRITICAL STOCK SIZES Biomass Limit	Maintain a minimum female spawning stock biomass above a biomass limit reference point at least 90% of the time	SB < Spawning Biomass Limit (SB _{Lim}) SB _{Lim} =20% spawning biomass	Long-term	0.10	$P(SB < SB_{Lim})$	
2.1 LIMIT CATCH VARIABILITY	Limit annual changes in the coastwide TCEY	Average Annual Variability (<i>AAV</i>) > 15%	Long-term Short-term	0.25	P(AAV > 15%	

Long-term

Short-term

GENERAL OBJECTIVE	OBJECTIVE	MEASURABLE OUTCOME	IIME-FRAME	IOLERANCE	METRIC
1.1. KEEP BIOMASS ABOVE A LIMIT TO AVOID CRITICAL STOCK SIZES	l biomass above	SB < Spawning Biomass Limit (SB _{Lim}) SB _{Lim} =20% spawning	Long-term	0.10	P(SB < A)

Median TCEY

Maximize TCEY

subject to other

objectives

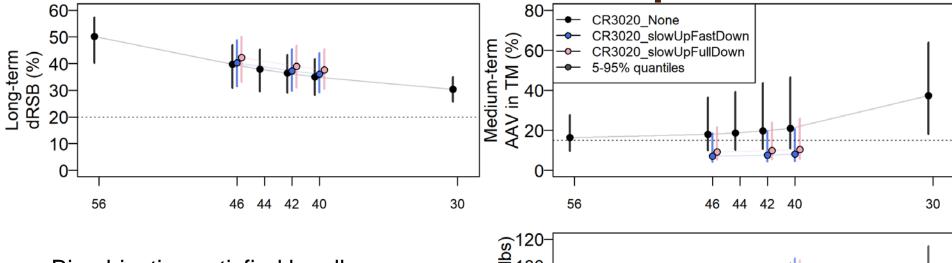
2.2 MAXIMIZE

FISHING YIELD

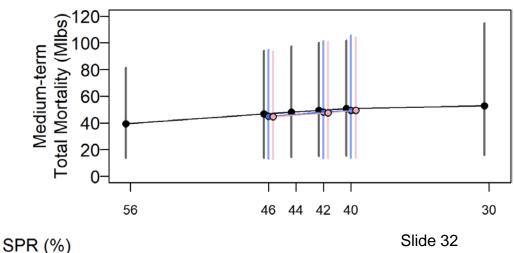
DIRECTED

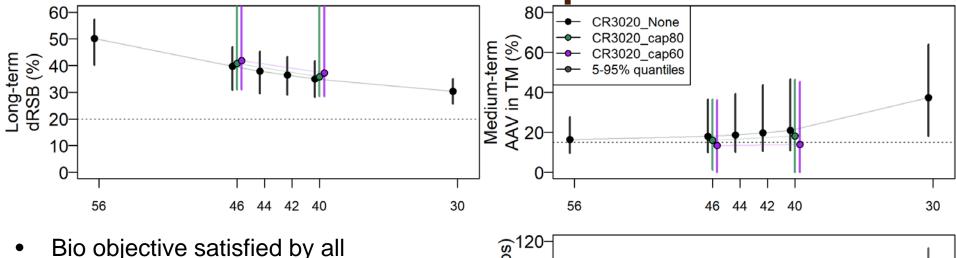
Median(TCEY)

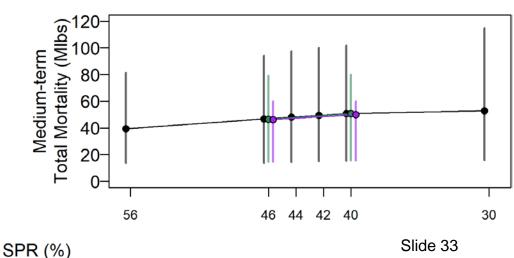
Biological objective


- Why is there only one biological objective?
 - Two spawning biomass objectives makes one moot
 - The target SPR results in an equilibrium biomass

	Increasing Fishing Intensity				
SPR	56%	46%	40%	36%	30%
Theoretical stock status	52%	41%	35%	30%	24%
Simulated stock status	49%	41%	36%	32%	27%


 The main objective is to avoid critical states where the stock may not recover (i.e., 20% of unfished)


Performance metrics: Slow-Up


- Bio objective satisfied by all
- AAV reduced and some SPRs meet objective for medium- and long-term
- Slightly reduced yield
- Values other than those specified not simulated

Performance metrics: Cap

- AAV reduced but does not meet
- objectiveDoes not take advantage of high
- catch potential, but slight increase in median TM
- Drivers other than fishing are a large part of variability

