IPHC 5-year Biological and Ecosystem Science Research Program: Update (Agenda Item 8.3)

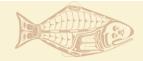
Josep V. Planas Biological and Ecosystem Science Branch Manager

> IPHC Interim Meeting 28 – 29 November, 2017

INTERNATIONAL PACIFIC HALIBUT COMMISSION

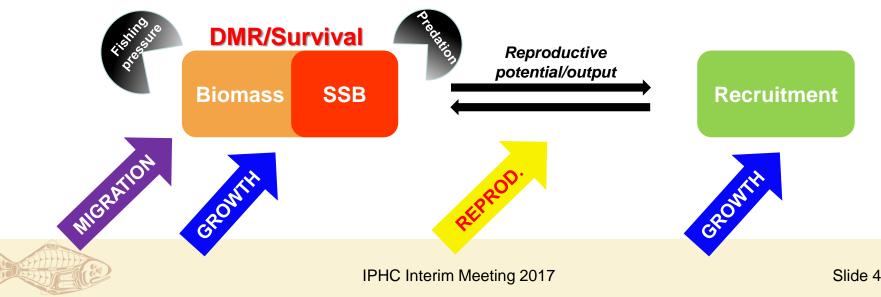
Outline of the presentation

- Update on the research activities of the Biological and Ecosystem Science Branch
- Outcome of external funding applications
- Proposed research projects for 2018

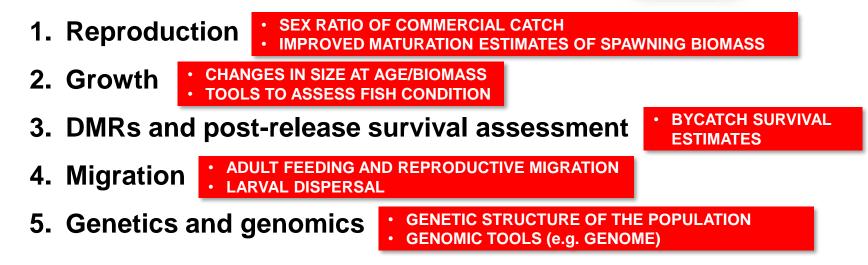

Paper IPHC-2017-IM093-11

Outline of the presentation

- Update on the research activities of the Biological and Ecosystem Science Branch
- Outcome of external funding applications
- Proposed research projects for 2018



Primary research activities at IPHC


Primary objectives


- Identify and address critical knowledge gaps in the biology of the Pacific halibut
- Understand the influence of environmental conditions on halibut biology
- Apply resulting knowledge to reduce *uncertainty* in current stock assessment models

Primary research areas at IPHC



Update of research activities at IPHC

- 1. Reproduction SEX RATIO OF COMMERCIAL CATCH IMPROVED MATURATION ESTIMATES OF SPAWNING BIOMASS
- 2. Growth
- 3. DMRs and post-release survival assessment
- 4. Migration
- 5. Genetics and genomics

There are important knowledge gaps on the reproductive biology of the species

SEX RATIO OF COMMERCIAL CATCH
IMPROVED MATURATION ESTIMATES OF SPAWNING BIOMASS

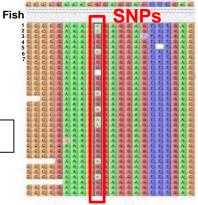
Projects:

- 1. Sex marking and identification of genetic sex (Projects 621.15 and 621.16)
- 2. Full characterization of the annual reproductive cycle (Project 674.11)
- 3. Identification of genetic reproductive markers

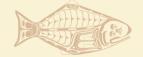
Objectives:

- Identification of genetic markers of sex and information on sex ratios.
- Knowledge on reproductive development, maturation, fecundity, environmental and hormonal control of reproduction.
- Scientific-based criteria to identify reproductive status and potential.
- Updated estimates of age and size at maturation.
- Information on skipped spawning.

IPHC Interim Meeting 2017


1. Reproduction

• Development of genetic markers for sex identification (Project 621.16)


Objectives: To identify genetic markers for sex identification in the commercial catch

- <u>Restriction site-associated DNA sequencing (RADseq) approach</u>
 - 95 fish (55 female and 40 male) sequenced
 - 40,308 loci identified
 - 56 loci linked to sex (70 SNPs) based on FST values ≥ 0.4
 - Most females heterozygous and most males homozygous (ZW/ZZ)
 - 3 loci found only in females (0 only in males)
 - TaqMan assays developed for 2 sex-linked loci: Hs10183, Hs23885

Genetic assay accuracy (based on 199 morphologically sexed fish): 97.5%

Transcript variation Genome alignment

Drinan, Loher and Hauser (2017) J. Heredity. In Press

Sex marking at sea and validation of genetic sex (Project 621.15)

Objectives: To establish a method for physically marking sex by the commercial fleet and validation of marking efficiency by genetic sex identification

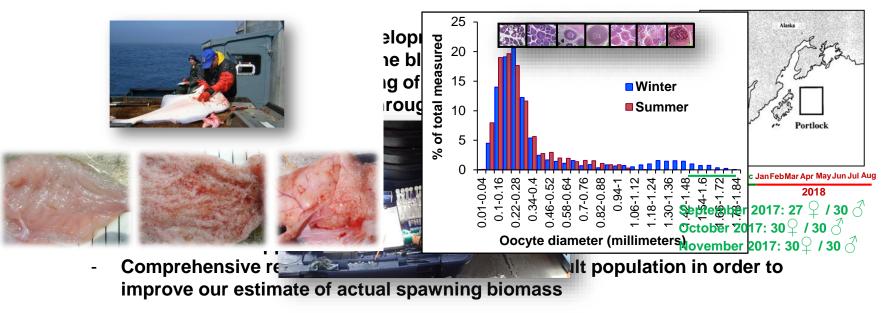
Dorsal Cut (Female)	Gill Plate Cut (Male)
---------------------	-----------------------

Reg Area	Sampled trips	Number of fish
2A	36	70
2B	5	84
2C	16	116
3A	10	113
3B	9	292
4A	2	77
4B	2	95
4C	4	86
4D	1	19
TOTAL	84	929

2017

- 2016 (Reg Area 2B; 10 R/V; 288 samples)

79% marking accuracy (validated genetically)


- 2017 (Coastwide; 87 R/V; 929 samples)

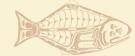
??% marking accuracy (validated genetically)

- 71 US vessels
- 16 BC vessels
- Wide participation WA Tribes

• Full characterization of the annual reproductive cycle (Project 674.11)

Objective: Understand temporal changes in reproductive development throughout an entire annual reproductive cycle in male and female Pacific halibut

Identification of genetic reproductive markers by RNA sequencing ٠


Sample transcript ID	Length (nt)	Database	Database ID	Identity (%)	Gene_symbol	Annotation	Function	
TRINITY_DN13531_c0_g1_i1	3754	Danio rerio	ENSDARP00000004431	89,31	acvr1ba	activin A receptor, type IBa	Oogenesis	Oogenesis/oocyte maturation
TRINITY_DN31883_c0_g1_i1	585	Danio rerio	ENSDARP00000121689	74,74	adamts2	ADAM metallopeptidase with thrombospondin type 1 motif, 2	Ovulation	
TRINITY_DN14738_c0_g1_i1	3062	Danio rerio	ENSDARP00000088795	82,07	ar	androgen receptor	Hormone signaling	Hormone production
TRINITY_DN18096_c0_g1_i1	1654	Danio rerio	ENSDARP00000076033	76,81	aqp10b	aquaporin 10b	Oocyte hydration	
TRINITY_DN18849_c1_g1_i1	1680	Danio rerio	ENSDARP00000112455	94,97	bmp1a	bone morphogenetic protein 1a	Oogenesis	Ovulation
TRINITY_DN16877_c1_g1_i1	976	Danio rerio	ENSDARP00000111604	70,78	cyp19a1a	cytochrome P450, family 19, subfamily A, polypeptide 1a	Aromatase (estrogen production)	
TRINITY_DN16252_c0_g1_i1	2580	Danio rerio	ENSDARP00000124026	76,09	ddx4	DEAD (Asp-Glu-Ala-Asp) box polypeptide 4	Oogonia marker	2 2 1 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2
TRINITY_DN23892_c0_g1_i1	232	Danio rerio	ENSDARP00000073932	71,62	EGFR	epidermal growth factor receptor	Maturational signaling	- Carl Carl Carl Carl Carl Carl Carl Carl
TRINITY_DN4356_c0_g1_i1	209	Uniprot	Q4JK73	66,67	HSD17B11	Estradiol 17-beta-dehydrogenase 11	Steroidogenesis	
TRINITY_DN21356_c3_g1_i2	4620	Uniprot	Q9W6M2	80,88	esr2	Estrogen receptor beta	Hormone signaling	
TRINITY_DN6202_c1_g1_i1	287	Danio rerio	ENSDARP00000096529	79,79	fshr	follicle stimulating hormone receptor	Hormone signaling	· · · · · · · · · · · · · · · · · · ·
TRINITY_DN9106_c0_g1_i1	2006	Danio rerio	ENSDARP00000061827	80,39	fox12	forkhead box L2	Female sex differentiation	3
TRINITY_DN21868_c0_g1_i1	306		ENSDARP00000055566	70,83	gnrhr4	gonadotropin releasing hormone receptor 4	Hormone signaling	
TRINITY_DN16738_c0_g1_i1	1391		ENSDARP00000059752	71,32	inhbb	inhibin, beta B	Oogenesis	8
TRINITY_DN21305_c0_g1_i1 TRINITY_DN12886_c1_g1_i1	1466	Uniprot	Q90674	62,65	LHCGR	Lutropin-choriogonadotropic hormone receptor	Hormone signaling	
	771		ENSDARP00000109370	82,1	pgr	progesterone receptor	Maturational signal	
TRINITY_DN15432_c0_g1_i1	2592	Danio rerio	ENSDARP0000003684	80,26	ptgs2b	prostaglandin-endoperoxide synthase 2b	Prostaglandin synthesis	the second se
TRINITY_DN14537_c0_g1_i1	3164		ENSDARP0000006091	77,49	mmp2	matrix metallopeptidase 2	Ovulation	
TRINITY_DN24972_c0_g1_i1	292	Uniprot	P41245	76,92	Mmp9	Matrix metalloproteinase-9	Ovulation	

Ovarian genes

Testicular genes

н	RNA-s	Sample transcript ID	Length (nt)	Database	Database ID	Identity (%)	Gene_symbol	Annotation	Function		090
н	INIA-3	TRINITY_DN28811_c1_g1_i2	2574	Danio rerio	ENSDARP00000088795.3	71,15	ar	androgen receptor	Spermatogenesis	- Spermatogenesis	
н		TRINITY_DN37544_c0_g1_i1	248	Uniprot	sp C6KI89 CTSG2_MOUSE	68,75	Catsperg2	Cation channel sperm-associated protein subunit gamma 2	Sperm activation	Testiouler differentiation	
L		TRINITY_DN32484_c1_g1_i1	1411	Danio rerio	ENSDARP00000123870.1	78,57	ddx4	DEAD (Asp-Glu-Ala-Asp) box polypeptide 4	PGC marker	Testicular differentiation	EST
		TRINITY_DN34322_c0_g1_i1	2573	Uniprot	sp Q801F8 DMRT1_ORYLA	65,77	dmrt1	Doublesex- and mab-3-related transcription factor 1	Male sex differentiation factor	Sperm production	thers
		TRINITY_DN23128_c0_g1_i1	2126	Danio rerio	ENSDARP00000136983.1	89,68	fsta	follistatin a	Hormone	sperin production	
-		TRINITY_DN46346_c0_g1_i1	624	Danio rerio	ENSDARP00000130239.1	80,56	INHBB	inhibin beta B	Hormone receptor		62,0
ſ		TRINITY_DN49968_c0_g1_i1	310	Danio rerio	ENSDARP00000131027.1	79,61	gnrhr1	gonadotropin releasing hormone receptor 1	Hormone receptor	- La Chier	
н		TRINITY_DN15829_c0_g2_i1	2899	Danio rerio	ENSDARP00000089386.3	82,09	nanos3	nanos homolog 3	Spermatogonial marker	1 -6	66,5
н	Bla	TRINITY_DN32323_c1_g1_i1	2763	Danio rerio	ENSDARP00000109370.2	83,42	pgr	progesterone receptor	Hormone receptor		
н	Dia	TRINITY_DN6999_c1_g1_i1	345	Danio rerio	ENSDARP00000104772.2	74,56	ptgs1	prostaglandin-endoperoxide synthase 1	Prostaglandin production		
н	Danio	TRINITY_DN20678_c0_g1_i1	234	Danio rerio	ENSDARP00000136548.1	97,83	RSBN1	round spermatid basic protein 1	Spermatid marker		
L	During	TRINITY_DN33366_c1_g1_i5	3258	Danio rerio	ENSDARP00000104616.2	89,27	strbp	spermatid perinuclear RNA binding protein	Spermatid marker		enc
		TRINITY_DN34579_c8_g1_i1	635	Danio rerio	ENSDARP00000106978.2	92,67	sox9a	SRY (sex determining region Y)-box 9a	Male sex differentiation factor		
_		TRINITY_DN6843_c0_g1_i1	235	Danio rerio	ENSDARP00000023907.6	79,49	star	steroidogenic acute regulatory protein	Testicular steroidogenesis		ue)
- L	Jalibut	a opodol tr	000	orinte	ama dataa	^ +					~~,

Halibut gonadal transcriptome dataset

ences (ue)

74.513.854 0.047.698

582

1,240

Primary research areas at IPHC

1. Reproduction

- 2. Growth
- CHANGES IN SIZE AT AGE/BIOMASS
 TOOLS TO ASSESS FISH CONDITION
- 3. DMRs and post-release survival assessment

4. Migration

5. Genetics and genomics

Little is known regarding what factors influence growth in this species

CHANGES IN SIZE AT AGE/BIOMASS
TOOLS TO ASSESS FISH CONDITION

Projects:

- 1. Identification and validation of physiological markers for growth (Project 673.14)
- 2. Evaluation of growth patterns and effects of environmental influences (NPRB 1704)

Objectives:

- Knowledge on growth patterns and environmental influences.
- Improved understanding in the possible role of growth alterations in the observed decrease in size at age.

1. Mass identificat

- Identification of g
- Develop molecula

	Gene	Lengtn			
Annotation	symbol	(nt)	Identity (%)	Function	
Androgen receptor	ar	4426	81.48	Protein synthesis	
Calcium/calmodulin-dependent protein kinase II alpha	camk2a	2342	87.27	Force transmission	(1)
Creatine kinase, muscle a	ckma	2256	89.76 🧹	Energy metabolism	(4)
Carnitine palmitoyltransferase 1B	cpt1b	762	81.87	Lipid metabolism	-
Dystrophin	dmd	1282	7.23	Force transmission	th studies
Eukaryotic translation initiation factor 4eb	eif4eb	1168		Protein synthesis	in studies
F-box protein 32	fbxo32	695	86.25	Protein atrophy	
Glycogen synthase 1	gys1	303	89.47	Conergy metabolism	
Histone deacetylase 1	hdac1	2490	96.15	Muscle repressor	
Insulin-like growth factor 2 receptor	igf2r 🔶	511	0.62	Growth regulator	
Insulin-like growth factor binding protein 5b	igfbp:	1372	81.5	Growth angulator	ant tissues.
Lipoprotein lipase		1789	60.48	Lipid netabolism	
Myocyte enhancer factor 2cb	mef2cb	54	79.8	Wriscle growth	
Myostatin b	mstnb	.89	95.74	Growth regulator	
Mechanistic target of rapamycin	mtor	1153	97.92	Protein synthesis	
Myogenic factor 6	my 🖌 🗸	819	19	Muscle growth	
Myosin, heavy polypeptide 1.3, skeletal muscle	m. <i>1</i> . 1. 3	246	86.42	Muscle growth	
Myoblast determination protein 1 homolog	myod	2407	72.67	Muscle development	
Myozenin 1a	myoz1a	755	74.6	Force transmission	
Nuclear factor of activated T-cells, cytoplasmic 3	nfatc3 🔨 💋	1587	62.96	Muscle activity	
Paired box 3a	pax3	269	75	Muscle development	
Paired box 7b	Nax (D	297	85.71	Muscle development	
Peroxisome proliferator-activated receptor gamma, coactivator 1 alpha	,µµargc1a	519	88.7	Energy metabolism	
Protein phosphatase 3, catalytic subunit, alpha isozyme	ppp3ca	3407	83.69	Muscle activity	
Protein kinase, AMP-activated, alpha 1 catalytic subunit	prkaa1	1925	70.96	Energy metabolism	
Phosphorylase, glycogen, muscle	pygma	5514	90.91	Energy metabolism	
Serum response factor	srf	4393	63.81	Muscle development	
Transforming growth factor, beta 1a	tgfb1a	561	77.04	Growth regulator	
Tripartite motif containing 63b	trim63b	2117	81.16	Protein atrophy	

Deliverables:

- Establishment of a growth-related gene sequence dataset
- Molecular assays to monitor growth patterns based on growth-markers

2. Evaluation of growth patterns and effects of environmental influences

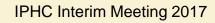
Objective: Identify molecular, biochemical and isotopic profiles characteristic of specific growth patterns and evaluate potential effects of environmental influences.

- Establishment of different growth trajectories in juvenile fish in captivity to identify molecular and biochemical signatures of growth patterns.
 - Manipulating growth rates (ration, density, thermal- or fastinginduced compensation, etc.):

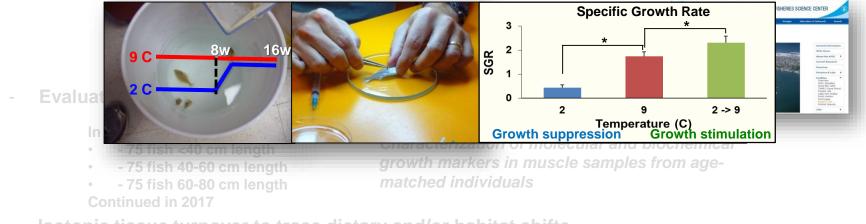
- Evaluation of different growth patterns in the wild.

Samples collected in NMFS trawl survey In 2016 and 2017 from 3 size categories: - <40 cm length

- 40-60 cm length
- 60-80 cm length

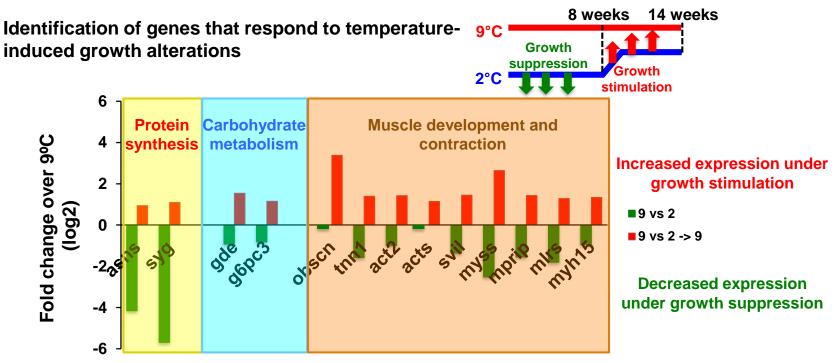


Characterization of molecular and biochemical growth markers in muscle samples from agematched individuals

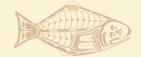

- Isotopic tissue turnover to trace dietary and/or habitat shifts

¹³C, ¹⁵N

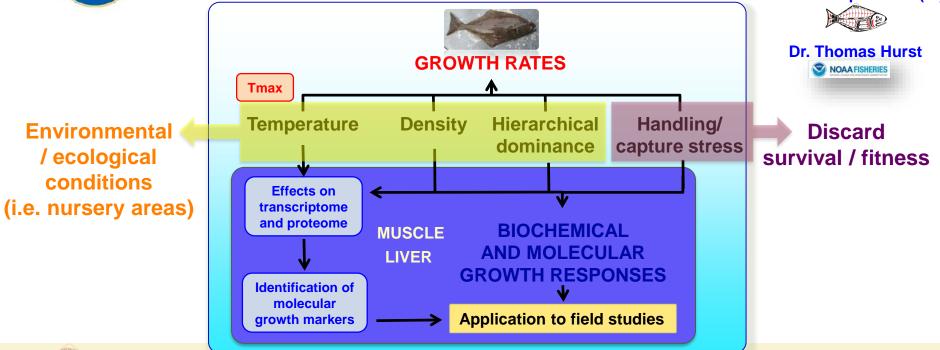
- Evaluation of growth patterns and effects of environmental influences Objective: Identify molecular, biochemical and isotopic profiles characteristic of specific growth patterns and evaluate potential effects of environmental influences.
 - Establishment of different growth trajectories in juvenile fish in captivity to identify molecular and biochemical signatures of growth patterns.



Isotopic tissue turnover to trace dietary and/or habitat shifts


¹³C, ¹⁵N

• Evaluation of growth patterns and effects of environmental influences

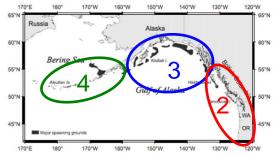


Potential molecular markers for temperature-regulated growth

NPRB Grant 1704 (2017-2019): "Somatic growth processes in the Pacific halibut (Hippoglossus stenolepis) and their response to temperature, density and stress manipulation effects". IPHC / AFSC – Newport, OR

-

- Evaluation of growth patterns and effects of environmental influences
 Objective: Identify molecular, biochemical and isotopic profiles characteristic of specific growth patterns and evaluate potential effects of environmental influences.
 - Evaluation of different growth patterns in the wild.


Samples collected in NMFS trawl survey In 2016 and 2017 from 3 size categories:

- <40 cm length
- 40-60 cm length
- 60-80 cm length

Characterization of molecular and biochemical growth markers in muscle samples from agematched individuals

Phase 2: Regional monitorization of growth patterns

- Investigate the effects of other environmental factors on growth performance.
 - Effects of salinity, dissolved oxygen and water pH on growth.

Relate to catch efforts in FISS in time and space model

- Identify the optimal environmental conditions for growth.

Deliverables:

- Identification and validation of growth markers for field studies
- Characterization of molecular and biochemical growth signatures
- Environmental effects on somatic growth
- Improved biological inputs on biomass estimates

Primary research areas at IPHC

1. Reproduction

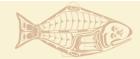
2. Growth

3. DMRs and post-release survival assessment

BYCATCH SURVIVAL ESTIMATES

- 4. Migration
- 5. Genetics and genomics

Little is known regarding the factors that influence bycatch survival


• BYCATCH SURVIVAL ESTIMATES

Project components:

- 1. Evaluate the effects of fish handling practices on injury levels and the physiological condition of captured Pacific halibut (Project 672.13, S-K Grant)
- 2. Investigate the relationship between physiological condition post-capture and survival as assessed by the use of accelerometer tags (S-K Grant)
- 3. Explore the applicability of electronic monitoring in DMR estimations (S-K Grant)

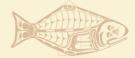
Objectives:

 To introduce quantitative measurable factors that are linked to fish handling practices and to fish physiological condition and ultimately to survival in order to improve current DMR estimations

 Evaluate the effects of fish handling practices on injury levels and the physiological condition of captured Pacific halibut

Objective: Understand relationship between handling practices and physiological condition of captured Pacific halibut in the longline fishery

Assess *injuries* associated with release techniques (gangion cut, careful shake, hook straightening, hook stripping).



 Investigate the relationship between physiological condition postcapture and survival as assessed by tagging

Objective: Measure post-release survival in Pacific halibut and relate it to physiological condition and capture-related events

- Tag fish that have been exposed to different handling practices in the longline fishery with accelerometer tags in addition to conventional tags (wire).
- Assess survival of fish according to size and physiological condition.

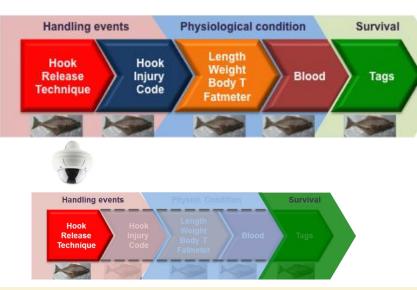
• Explore the applicability of electronic monitoring in DMR estimations

Objective: Test the ability of electronic monitoring to capture fish handling events and fish condition and relate it to survival

- Deploy electronic monitoring (EM) system on a longline vessel.
- Video record fish handling events during capture.
- Determine injury profile by release method.

Delive

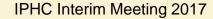
and photeletted Sul


and associated injury levels

 Saltonstall – Kennedy Grant NA17NMF4270240 (2017-2019): "Improving discard mortality rate estimates in the Pacific halibut by integrating handling practices, physiological condition and post-release survival". IPHC / APU – Anchorage, AK

November 2017

- 2 6-day trips (GOA, F/V Kema Sue)
- 38 sets (8 standard skates/set)
- 3 randomized treatments/skate
- 1,048 fish sampled and wire tagged
- 79 fish tagged with accelerometer tags (mini satellite tags; 96 days recording)
- EM on each haul



Dr. Josep Planas (PI) Claude Dykstra Dr. Tim Loher Dr. Ian Stewart Dr. Allan Hicks

Primary research areas at IPHC


- 1. Reproduction
- 2. Growth

4. Migration

3. DMRs and post-release survival assessment

ADULT FEEDING AND REPRODUCTIVE MIGRATION
LARVAL DISPERSAL

5. Genetics and genomics

4. Migration

- ADULT FEEDING AND REPRODUCTIVE MIGRATION
- LARVAL DISPERSAL

Projects:

- 1. Juvenile and adult feeding migrations (Project 670.11)
- 2. Tail pattern recognition (Project 675.11)
- 3. Adult dispersal on Bowers Ridge (Reg. Area 4B) (Project 650.21)
- 4. Larval migration and connectivity

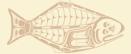
Objectives:

• To improve our understanding on larval, juvenile and reproductive migration.

4. Migration

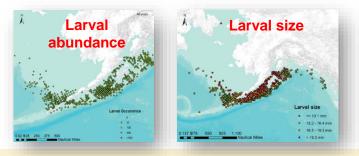
- Juvenile and adult migration studies (Project 670.11)
 - Juvenile wire tagging:
 - Adult wire tagging:

- NMFS trawl tagging project: 1469 fish
 713 fish in GOA and 756 fish in BS
- IPHC survey tagging project
 - 2016 pilot study in area 4D (U32)
 - 2017 coast-wide study (U32): 1927 fish

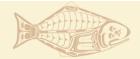

Fin clips are collected: Genetic analyses of tagged fish to shed light on migration patterns and geographic origin.

Tail pattern recognition (Project 675.11) 2017 Intern Project

- Blind side of tail is preferable for imaging.
- Spots and patterns appear to be unique.
- Tail markings can be used to identify individuals with image recognition software.
- Promising for implementation in FISS.


4. Migration

- *Reproductive and annual migration (Project 650.21)*
 - In 2017: 22 adult fish tagged with miniPAT tags No satellite data received yet (expected in January and July 2018).



Larval migration and connectivity

Objective: Understand the mechanisms of larval connectivity between GOA and BS.

Collaboration with Janet Duffy-Anderson, Esther Goldstein, William Stockhausen (NOAA-AFSC-Seattle)

IPHC Interim Meeting 2017

Primary research areas at IPHC

- 1. Reproduction
- 2. Growth
- 3. DMRs and post-release survival assessment
- 4. Migration
- 5. Genetics and genomics

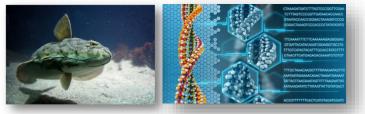
GENETIC STRUCTURE OF THE POPULATION GENOMIC TOOLS (e.g. GENOME)

5. Genetics and genomics

- GENETIC STRUCTURE OF THE POPULATION
- GENOMIC TOOLS (e.g. GENOME)

Projects:

- 1. Sequencing of the Pacific halibut genome (Project 673.13)
- 2. Population genetic studies (PLANNED)


Objectives:

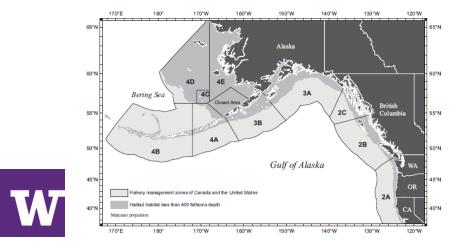
- Improve knowledge on the genetic composition of the population
- Establish genomic resources for the species
- Evaluate effects of fishery-dependent and fishery-independent influences on growth, reproduction, nutrition, etc.

5. Genetics and genomics

• Pacific halibut genome sequencing (Project 673.13)

Objective: Generate a first draft sequence of the Pacific halibut genome

- Genomic DNA sequenced from one Pacific halibut female (WZ).
- Conducted first genome assembly:
 - Full genome sequenced. Genome size: 700 Mb
 - Non-continuous genome sequence.
- Additional sequencing is required to complete assembly.

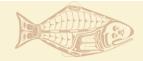


5. Genetics and genomics

• Population genetic studies (PLANNED)

Objective: Genetic characterization of Pacific halibut throughout its distribution range

- Characterization of population structure by RAD sequencing and SNP analysis.
- Identification of possible genetic signatures of geographical origin


Dr. Lorenz Hauser

Outline of the presentation

- Update on the research activities of the Biological and Ecosystem Science Branch
- Outcome of external funding applications
- Proposed research projects for 2018


Research proposals submitted for external funding in 2017

Project #	Grant agency	Project name	Partners	IPHC Budget (US\$)	PI	Management implications	Submission status
1	Saltonstall- Kennedy NOAA	Improving discard mortality rate estimates in the Pacific halibut by integrating handling practices, physiological condition and post-release survival	Alaska Pacific University	223,220	Planas (lead Pl) Dykstra Loher Stewart Hicks	Bycatch estimates	Awarded
2	NPRB	Somatic growth processes in the Pacific halibut (Hippoglossus stenolepis) and their response to temperature, density and stress manipulation effects	AFSC- NOAA- Newport	122,264	Planas (lead Pl)	Changes in biomass/size- at-age	Awarded
3	NPRB	Larval transport, supply, and connectivity of Pacific halibut between the Gulf of Alaska and the Bering Sea	AFSC- NOAA- Seattle UAF	8,000	Sadorus Planas Stewart	Biomass distribution	Rejected
4	Essential Fish Habitat NOAA	Validating biochemical markers of growth for habitat assessment in flatfishes	AFSC- NOAA- Newport	35,000	Hurst (lead PI) Planas	Changes in biomass/ recruitment	Rejected
5	NFWF	Evaluating virtual vitality assessments of discarded Pacific halibut	AFSC- NOAA, APU, NFR	-	Harris (APU), Dykstra	Bycatch estimates	Rejected

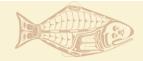
IPHC Interim Meeting 2017

Outcome of external funding applications

Project #	Grant agency	Project name	Partners	IPHC Budget (\$US)	PI/IPHC Staff	Management implications	Submission status
1	Saltonstall -Kennedy NOAA	Improving discard mortality rate estimates in the Pacific halibut by integrating handling practices, physiological condition and post- release survival	Alaska Pacific University	\$223,220	Planas (lead Pl) Dykstra Loher Stewart Hicks	Discard mortality estimates	Awarded Started in September 2017
2	NPRB	Somatic growth processes in the Pacific halibut (<i>Hippoglossus</i> <i>stenolepis</i>) and their response to temperature, density and stress manipulation effects	AFSC- NOAA- Newport	\$131,891	Planas (lead Pl) Rudy	Changes in biomass/size-at- age	Awarded Started in September 2017
		Total aw	arded (\$US)	\$355,111			

Temporal chart of activities

	2016	2017	2018	2019	2020	2021
		Anı	nual reproductive cy			
Reproduction			Sex determinati	on mechanisms		
	Sex iden	tification			-	



Outline of the presentation

- Update on the research activities of the Biological and Ecosystem Science Branch
- Outcome of external funding applications
- Proposed research projects for 2018

Research projects proposed for 2018

Project #	Project Name	Priority	Budget (\$US)	External funding for FY2018 (\$US)	Management implications
New Project	S .				
2018-01	Influence of thermal history on growth	High	\$136,004	-	Changes in biomass / size-at-age
2018-02	Adult captive holding studies	High	\$53,395	-	Changes in biomass / size-at-age / larval distribution
2018-03	Whale detection methods	High	\$37,511	-	Mortality estimation
2018-04	Larval connectivity modeling	High	\$20,000	-	Larval distribution
	Continuing Proj	ects			
621.16	Development of genetic sexing techniques	High	\$33,928	-	Sex composition of the catch
642.00	Assessment of Mercury and other contaminants	Medium	\$8,400	-	Environmental effects
650.18	Archival tags: tag attachment protocols	High	\$800	-	Adult distribution
650.21	Investigation of Pacific halibut dispersal in Regulatory Area 4B	High	\$6,800	-	Spawning areas
661.11	Ichthyophonus Incidence Monitoring	Medium	\$8,755	-	Environmental effects
669.11	At-sea Collection of Pacific Halibut Weight to Reevaluate Conversion Factors	High	\$7,645	-	Length-weight relationship
670.11	Wire tagging of Pacific halibut on NMFS trawl and setline surveys	High	\$12,840	-	Juvenile and adult distribution
672.12	Condition factors for tagged U32 Fish	High	\$9,116	-	DMR estimates
672.13	Discard mortality rates and injury classification profile by release method	High	\$1,037	\$255,402	DMR estimates
673.13	Sequencing the Pacific halibut genome	High	\$32,500	-	Environmental/Fishery effects
673.14	Identification and validation of markers for growth	High	\$25,681	\$57,773	Changes in biomass / size-at-age
674.11	Full characterization of the annual reproductive cycle	High	\$121,488	-	Maturity assessment
675.11	Tail pattern recognition	High	\$3,900	-	Juvenile and adult distribution
	Total - New Projects		\$251,910		
	Total - Continuing Projects		\$273,090		
	Overall Total (all projects for FY2018)		\$525,000		
	External Funding (for FY2018) (\$US)			\$313,175	

New research projects proposed for 2018

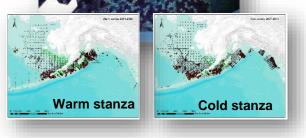
Influence of thermal history on growth

- Relate temperature history to individual growth as assessed by archival tagging
- Tag U32 fish with electronic archival tags recording temperature and depth.
- Quantify growth patterns in captured fish and relate them to their thermal history.
- Compare archival data analyses with otolith microchemistry (O¹⁸).

• Whale

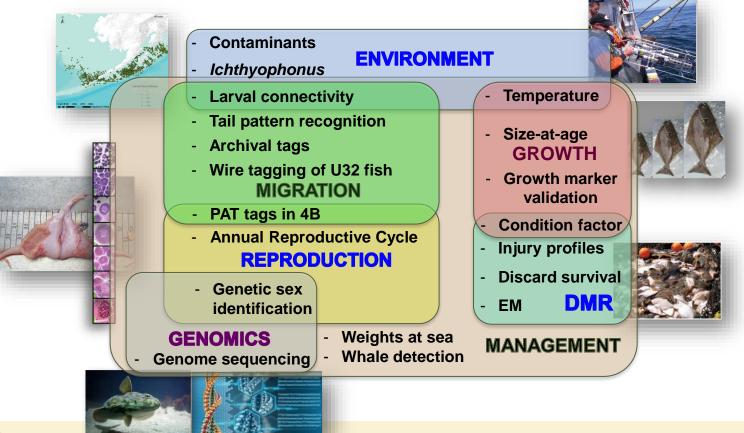
- Test ac whale d
- Relate v capture

. . .

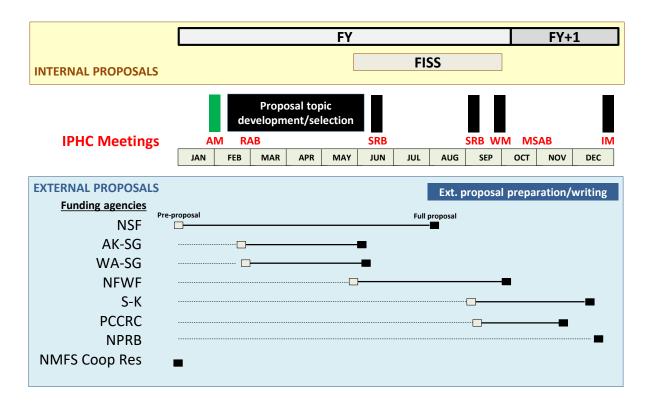

- nologies for
- acific halibut

Adult captive holding studies

- Test permanence of individual tail markings (Tail Pattern Recognition)
- Conduct diet manipulation experiments: fat meter validation, stable isotope studies on growth (N¹⁵/C¹³)
- Conduct temperature manipulation experiments for growth and O¹⁸ calibration studies
- Perform larval swimming performance tests
- Test transgenerational marking approaches through broodstock labeling
- Larval



 Model larval abundance and size distribution in the GOA and BS over time and oceanographic environmental conditions



Research projects for 2018

New Research Project Selection Process

Special research projects with outside agencies conducted in 2017

Project #	Outside agency	Project name	Regulatory area	Status	Management implications
1	NOAA	Testing the efficacy of stereoscopic electronic monitoring for species identification, enumeration and length measurement	2B, 2C, 3A, 3B	New	Integrating EM into observer program
2	PBS-DFO	Opportunistic shark sampling	2B	New	Understanding shark biology and distribution
3	WDWF	Yelloweye rockfish tagging on rockfish index stations	2A	New	Distribution
4	NOAA	Longnose skate age and maturity	2A, 2B, 2C, 3A, 3B, 4A	New	Age, growth and maturity
5	PBS-DFO	Rockfish sampling in area 2B	2B	Continuing	Age, size and maturity
6	WDFW	Rockfish sampling in area 2A	2A	Continuing	Species composition, relative abundance
7	ADFG	Yelloweye rockfish enumeration in Alaska	2C, 3A	Continuing	Distribution and assessment
8	ADEC	Environmental contaminant sampling	2C, 3A, 3B	Continuing	Environmental monitoring
9	NOAA	Pacific cod length frequency sampling	4A, 4B and 4D	Continuing	Stock assessment
10	NMFS- Auke Bay	Spiny dogfish sampling	2, 3 and 4	Continuing	Length, sex and distribution
11	Seattle Aquarium	Sixgill shark genetics	All areas	Continuing	Population genetics and distribution
Sol a		IPHC Interim Meeting 2017			Slide 44

Please stand by as we bring up the next presentation

2017 IPHC Interim Meeting