IPHC Management Strategy Evaluation (MSE)

An update

Interim Meeting 093

November 28-29, 2017

IPHC-2017-IM093-10

Boiter

Outline

- Overview of MSE process
- Goal, objectives, and performance metrics
- A description of the harvest strategy policy and the interim management procedure
- Simulation framework
- Investigating the scale component (Fishing Intensity)
- Preview of ideas on distributing the TCEY

Management Strategy Evaluation

MSE is a process to evaluate the harvest strategy policy and develop a management procedure that is robust to uncertainty

Six goals

1. Biological sustainability

- Fishery objectives Stakeholders Managers
- 2. Fishery sustainability, access, and stability
- 3. Minimize discard mortality
- 4. Minimize bycatch and bycatch mortality
- 5. Serve consumer needs
- 6. Preserve biocomplexity

Spawning Potential Ratio (SPR) Spawning Output Per Recruit with fishing

divided by

Spawning Output Per Recruit with no fishing

- A measure of the reduction in spawning potential due to fishing at a constant rate (F_{SPR})
- A long-term, average concept
- SPR=100% means no fishing
- SPR=40% means a 60% reduction in spawning potential

Coastwide Fishing Intensity

Fishing Intensity

• Determined from a harvest control rule

Investigating fishing intensity (scale)

- Procedural SPR
 - ranging from 25% to 60%
- Threshold
 - 30% or 40%

MSAB09 requested more than this, but I will only report the salient results

Performance

Trade-offs

Additional uncertainty

	Process	Uncertainty
	Natural Mortality (M)	Estimate appropriate uncertainty when conditioning OM
	Recruitment	Random, lognormal deviations
<	Size-at-age	Annual and cohort deviations in size-at-age with bounds
	Steepness	Estimate appropriate uncertainty when conditioning OM
<	Regime Shifts	Autocorrelated indicator based on properties of the PDO for regime shift
	TM to sources	See section on allocating TM to sources in IPHC-2017-IM093-10
	Proportion of TCEY	Sum of mortality across all sources may not equal coastwide TM

The operating model

- Operating Model
 - Parameter uncertainty
 - Model uncertainty
 - Additional uncertainty

Results: Four Metrics

- 1. dRSB (biological sustainability)
 - dynamic relative spawning biomass
- 2. Total Mortality (fishery yield)
 - Total removals from all sources
- 3. AAV (fishery stability)
 - average annual variability (in total mortality)
- 4. Relative SPR
 - The actual SPR accounting for adjustments in harvest control rule

Simulation & Evaluation Alternative scenarios Performance Trade-offs Review

Equilibrium results

- Long-term, equilibrium results
 - Not predicting what may happen in 100 years
 - Instead, evaluating how the Management Procedure may generally behave given the uncertainty
 - A long-term strategy
- The assessment (3 year projections) is useful for short-term tactical decision making

SPR simulations

Dynamic relative spawning biomass

Total Mortality

Average Annual Variability (AAV)

Realized SPR

Summary of results

- Stock status declines with SPR, but the reduction in fishing intensity, when below the threshold, lessens the continued decline
 - The 40% threshold lessens the decline sooner
 - Variability in stock status is less at low SPR (higher fishing intensity)
- Total mortality increases with lower SPR
- Variability in total mortality also increases at low SPR
- The ramping down of fishing intensity results in a lower realized SPR than the procedural SPR

Conclusions (for 30% threshold)

- Total Mortality does not increase much at SPR values less than 40%
- AAV shows a large increase at SPR of 30%
- Stock status reductions lessened at SPR less than 40%

- These conclusions are "best case" because using perfect information
 - More comprehensive simulations will be done in 2018

Harvest Strategy Policy

MSAB10

Intentionally left blank Intentionally left blank

Distributing the TCEY

Recommendations

- NOTE paper IPHC-2017-IM093-10
- **CONSIDER** the simulation framework and assumptions
- **CONSIDER** the long-term results

Please stand by as we bring up the next presentation

