#### Epizootiology of *Ichthyophonus* sp. in Pacific halibut (*Hippoglossus stenolepis*) in the Northeast Pacific Ocean and Bering Sea



#### Claude L. Dykstra<sup>1</sup>, Jacob L. Gregg<sup>2,3</sup>, and Paul K. Hershberger<sup>3</sup>

<sup>1</sup> International Pacific Halibut Commission
 <sup>2</sup> University of Washington, School of Aquatic and Fishery Sciences

<sup>3</sup>U.S. Geological Survey, Western Fisheries Research Center







# Outline

- What is *Ichthyophonus*?
- Why do we care?
- Study objectives.
- Study methods.
- Results with regard to spatial, temporal, and population composition (sex, size, age).
- General discussion.
- What's next?



#### What is Ichthyophonus sp.?

Cosmopolitan parasite of the class Mesomycetozoea



Simpson and Roger 2004

- Low host specificity
- Internal histozoic parasite
  - Found in all visceral organs and musculature of infected hosts

# Potential effects of Ichthyophonus

- Population level
  - Epizootics causing large mortality events
- Individual level
  - Reduced growth rate
  - Decreased swimming speed
  - Increased morbidity and mortality
- Food quality
  - Salmon drying
  - Pollock texture/taste



Chinook Heart: Stan Zuray – Rapids Research Center

# **Study Objectives**

#### • Determine:

- Infection <u>prevalence</u> of *Ichthyophonus sp.* in Pacific halibut throughout the NE Pacific and Bering Sea.
  - Spatial
  - Temporal
  - Correlation to host characteristics
    - Sex
    - Size
    - Age
- Infection intensity of the organism within halibut
- Any evidence of population impacts







2014 International Flatfish Symposium

Slide 6

#### Methods – Parasite culture (prevalence)

- Field Technique
  - Sterile resection of heart tissue (0.5-1.5 cm<sup>3</sup>) for parasite culture
    - Aseptically placed in 15-ml tube containing 7 ml of growth medium (MEM) containing antibiotics and antifungals







#### Methods – Parasite culture (prevalence)

- Lab Technique
  - Heart tissue cultured at 15°C
  - Examined microscopically (40X magnification) for presence of *Ichthyophonus* schizonts and/or hyphae
  - Examined twice, after 7d and 14d incubation
  - Media was exchanged in tubes that became turbid due to host tissue autolysis





### Methods – Tissue Histology (intensity)

- Field Technique
  - Non-sterile resection of heart and liver tissue (0.5 cm<sup>3</sup>)
  - Fixed in 5% neutral buffered formalin





## Methods – Tissue Histology (intensity)

- Lab Technique
  - Fixed tissue thin sectioned
  - Mounted and stained with hematoxylin-eosin and PAS
  - Examined under compound microscope and all Ichthyophonus schizonts present in a single 100x field of view were counted.
  - If no schizonts detected, entire section was examined.





2014 International Flatfish Symposium

# **Results – Prevalence – Spatial**



2014 International Flatfish Symposium

Slide 11

## **Results – Prevalence – Temporal**

- Significant differences for repeated locations
  - 2011 ( $\chi^2_2$ =36.94, p<0.001), 2012 ( $\chi^2_2$ =20.97, p<0.001) and 2013 ( $\chi^2_2$ =17.61, p<0.001)
- Within locations, relatively stable inter-annually

 Table 1. Prevalence of *lchthyophonus* sp. infections in Pacific halibut from 2011 to 2103 at three locations. Numbers in brackets are infected fish/total sample size.

|                                                                                        |             | Prevalence (%) |             |             |  |  |  |
|----------------------------------------------------------------------------------------|-------------|----------------|-------------|-------------|--|--|--|
| Location                                                                               | 2011        | 2012           | 2013        | Combined    |  |  |  |
| 4D Edge                                                                                | <b>26.1</b> | <b>31.7</b>    | <b>29.6</b> | <b>29.1</b> |  |  |  |
|                                                                                        | [17/65]     | [19/60]        | [19/64]     | [55/189]    |  |  |  |
| PWS-Inside                                                                             | 76.7        | 73.3           | 58.3        | <b>69.4</b> |  |  |  |
|                                                                                        | [46/60]     | [44/60]        | [35/60]     | [125/180]   |  |  |  |
| Oregon*                                                                                | 33.8        | <b>50.0</b>    | 23.7%       | 35.9        |  |  |  |
|                                                                                        | [22/65]     | [30/60]        | [14/59]     | [66/184]    |  |  |  |
| *Significant heterogeneity between years at this location ( $\chi^2_2$ =9.10, p<0.01). |             |                |             |             |  |  |  |



#### **Results – Prevalence – Temporal (cont'd)**

- Some evidence of within season variance
  - $-(\chi^2_1 = 9.03, p < 0.003)$  early June vs. late August



Table 2. Temporal Sampling Differences for the Albatross-Portlock site.

|   | Site                                  | Data Range       | Samples | % Positive | Ave. Length (cm) | Ave. Age (yr) |  |
|---|---------------------------------------|------------------|---------|------------|------------------|---------------|--|
|   | Albatross                             | June 2-10, 2012  | 28      | 71.4%      | 77.4             | 13.1          |  |
|   | Portlock                              | Aug. 26-27, 2012 | 32      | 32.3%      | 75.9             | 11.1          |  |
| D | 2014 International Flatfish Symposium |                  |         |            |                  |               |  |

### **Results – Prevalence – Sex**

• Infection prevalence was higher in females (39.0%) than males (31.5%) ( $\chi^2_1$ =7.73, p<0.005)

| Table 3. Prevalence of <i>Ichthyophonus</i> infections in Pacific halibut by sex and year. |       |       |       |         |  |  |  |
|--------------------------------------------------------------------------------------------|-------|-------|-------|---------|--|--|--|
|                                                                                            |       |       |       |         |  |  |  |
| Sex                                                                                        | 2011  | 2012  | 2013  | Average |  |  |  |
| Female                                                                                     | 48.2% | 37.1% | 36.4% | 39.0%   |  |  |  |
| Male                                                                                       | 35.4% | 30.1% | 38.9% | 31.5%   |  |  |  |
| Average                                                                                    | 44.7% | 33.7% | 37.2% | 36.0%   |  |  |  |



### **Results – Prevalence – Size**

• Prevalence varies significantly with size ( $\chi^2_{10} = 118$ , p<0.001)





### **Results – Prevalence – Age**

• Prevalence varies significantly with age ( $\chi^2_5$ =98.34, p<0.001)





# **Results – Prevalence – Size at Age**





# **Results – Intensity**

- Intensity work (2012) provided interesting results
  - Of 278 culture positive halibut:
    - Schizonts positively detected in 7 (2.5%) heart tissue sections
    - None detected in liver tissue.
  - Schizonts were not dense, 1 or 2 present per section
  - None detected from culture negative halibut (n=52)







Slide 19

# **General Discussion**

- Relatively high prevalence across the range
- Higher prevalence in older, larger fish and females
   Ontogenetic shift in diet
- Very low intensity
- Spatial and temporal stability
- Genetically similar organism throughout range
- No historical data on *Ichthyophonus* in P. halibut.
  - Unknown if new or long term commensal with halibut
  - Unknown effect (if any) on health of individual, growth dynamics, or mortality (population)

# **Next Steps**

- Continued monitoring at the three sites
  - Both prevalence and intensity
  - Sudden change in either could be indicative of a mortality effect
- Such changes could prompt a growth/energetics study
- Further investigation intensity with genetic probe



# Acknowledgements

- Jake Gregg, Paul Hershberger
- Wendy Olson
- Dr. Richard Kocan
- USGS, Washington Animal Disease Diagonostic Lab
- IPHC Sea samplers on SSA and Trawl survey vessels
- IPHC GIS staff

