

Five-year research program and management implications (2017-2021)

5-Year Biological and Ecosystem Science Research Plan

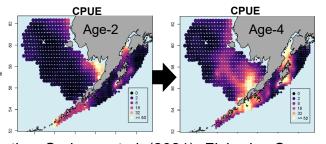
Primary Research Areas	Main Objectives	Management implications
Migration	Improve understanding of migration throughout all life stages (larval, juvenile, adult feeding and reproductive migrations)	Stock distribution, regional management
Reproduction	Information on sex ratios of commercial landings and improved maturity estimates	Female stock spawning biomass
Growth	Improve understanding of factors responsible for changes in size-at-age and development of tools for monitoring growth and physiological condition	Biomass estimates
DMRs and discard survival	Improve estimates of DMRs in the directed longline and guided recreational fisheries	Discard mortality estimates
Genetics and genomics	Improve understanding of the genetic structure of the population and create genomic tools (genome)	Stock distribution, local adaptation

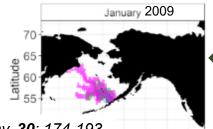
Next 5-Year Research Plan (2022-26) in development

Ranked research priorities for SA

SA Rank	Research outcomes	Relevance for stock assessment	Specific analysis input	Research Area	Research activities
	Updated maturity schedule		Will be included in the stock assessment, replacing the current schedule last updated in 2006		Histological maturity assessment
	Incidence of skip spawning	Scale biomass and	Will be used to adjust the asymptote of the maturity schedule, if/when a time-series is available this will be used as a direct input to the stock assessment		Examination of potential skip spawning
Biological input	Fecundity-at-age and -size information	reference point estimates	Will be used to move from spawning biomass to egg-output as the metric of reproductive capability in the stock assessment and management reference points	Reproduction	Fecundity assessment
	Revised field maturity classification		Revised time-series of historical (and future) maturity for input to the stock assessment		Examination of accuracy of current field macroscopic maturity classification
2. Biological input	Stock structure of IPHC Regulatory Area 4B relative to the rest of the Convention Area	Altered structure of future stock assessments	If 4B is found to be functionally isolated, a separate assessment may be constructed for that IPHC Regulatory Area	0 " 10 :	Population structure
Biological input	Assignment of individuals to source populations and assessment of distribution changes	Improve estimates	Will be used to define management targets for minimum spawning biomass by Biological Region	Genetics and Genomics	Distribution
	Improved understanding of larval and juvenile distribution	of productivity	Will be used to generate potential recruitment covariates and to inform minimum spawning biomass targets by Biological Region	Migration	Larval and juvenile connectivity studies
1. Assessment data	Sex ratio-at-age	Scale biomass and	Annual sex-ratio at age for the commercial fishery fit by the stock assessment		Sex ratio of current commercial landings
collection and processing	Historical sex ratio-at-age	fishing intensity	Annual sex-ratio at age for the commercial fishery fit by the stock assessment	Reproduction	Historical sex ratios based on archived otolith DNA analyses
Assessment data collection and processing	New tools for fishery avoidance/deterence; improved estimation of depredation mortality	Improve mortality accounting	May reduce depredation mortality, thereby increasing available yield for directed fisheries. May also be included as another explicit source of mortality in the stock assessment and mortality limit setting process depending on the estimated magnitude	Mortality and survival assessment	Whale depredation accounting and tools for avoidance
1. Fishery yield	Physiological and behavioral responses to fishing gear	Reduce incidental mortality	May increase yield available to directed fisheries	Mortality and survival assessment	Biological interactions with fishing gear
2. Fishery yield	Guidelines for reducing discard mortality	Improve estimates of unobserved mortality	May reduce discard mortality, thereby increasing available yield for directed fisheries	Mortality and survival assessment	Best handling practices: recreational fishery

Ranked research priorities for MSE

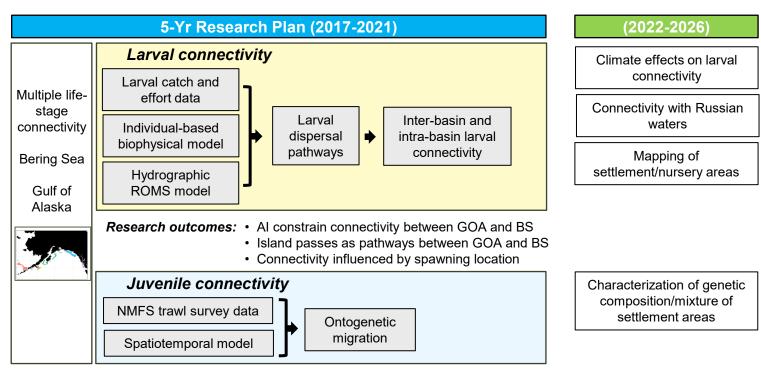

MSE Rank	Research outcomes	Relevance for MSE	Research Area	Research activities
Biological parameterization	Improved understanding of larval and juvenile distribution	Improve parametization of the	Migration	Larval and juvenile connectivity studies
and validation of movement estimates	Stock structure of IPHC Regulatory Area 4B relative to the rest of the Convention Area	Operating Model		Population structure
Biological parameterization and validation of recruitment	Assignment of individuals to source populations and assessment of distribution changes	Improve simulation of recruitment variability and parametization of recruitment distribution in the Operating Model	Genetics and Genomics	Distribution
and validation of recruitment variability and distribution	Establishment of temporal and spatial maturity and spawning patterns	Improve simulation of recruitment variability and parametization of recruitment distribution in the Operating Model	Reproduction	Recruitment strength and variability
	Identification and application of markers for growth pattern evaluation	Improve simulation of		
Biological parameterization and validation for growth projections	Environmental influences on growth patterns	variability and allow for scenarios investigating	Growth	Evaluation of somatic growth variation as a driver for changes in size-at-age
projections	Dietary influences on growth patterns and physiological condition	climate change		and at ago
Fishery parameterization	Experimentally-derived DMRs	Improve estimates of stock productivity	Mortality and survival assessment	Discard mortality rate estimate: recreational fishery


1. Migration and Distribution

Research area	Research activities	Research outcomes	Relevance for stock assessment (SA)	SA Rank	Relevance for MSE	MSE Rank
Migration	Larval and juvenile connectivity and early life history studies	Improved understanding of larval and juvenile distribution	Improve estimates of productivity	3. Biological input		Biological parameterization and validation of movement estimates

Key findings:

- Aleutian Islands constrain connectivity, but large island passes act as conduits between the GOA and Bering Sea
- Degree of inter-basin larval connectivity is influenced by spawning location
- Large degree of within-basin connectivity
- Demersal stage fish in the Bering Sea migrate outward from Bristol Bay and reach Unimak Pass by age-4, widely dispersed by age-6

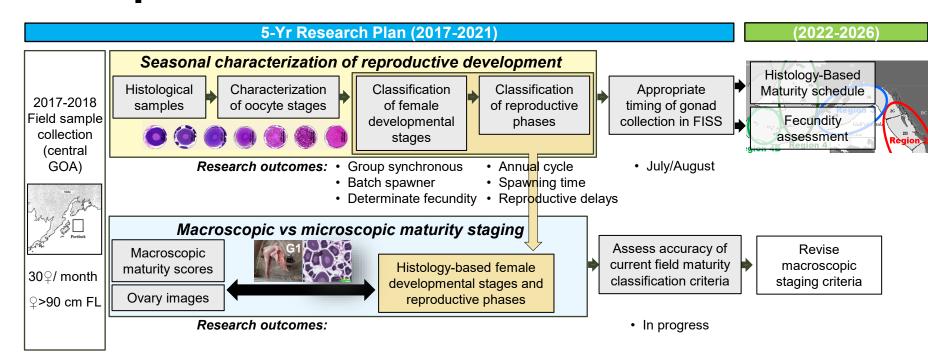


Recent Publication: Sadorus et al. (2021). Fisheries Oceanography. 30: 174-193

	1 100	aching BS
	Warm	Cold
Year	2005	2009
SR 1	100	100
SR 2	58.1	52.7
SR 3	15.2	17.2
SR 4	8.2	4.5
SR 5	0.6	0.08

1. Migration and Distribution

Research outcomes: • Post-settlement migration from BS to GOA

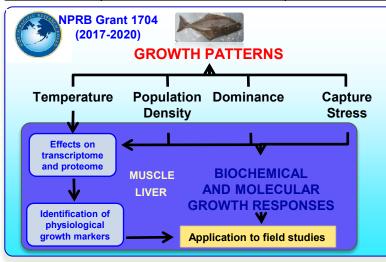

Staff involved: Lauri Sadorus, Ray Webster, Josep Planas

Publications: Sadorus et al. (2021) Fisheries Oceanography. 30: 174-193

2. Reproduction

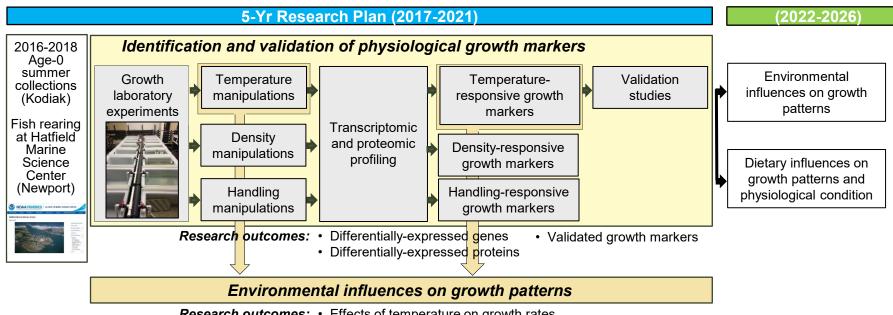
Research area	Research activities	Research outcomes	Relevance for stock assessment (SA)	SA Rank	Relevance for MSE
	Histological maturity assessment	Updated maturity schedule			
Reproduction	Examination of potential skip spawning	Incidence of skip spawning	Scale biomass and	1. Biological input	
	Fecundity assessment	Fecundity-at-age and -size information	reference point estimates		Improve simulation of spawning biomass in the Operating Model
	Examination of accuracy of current field macroscopic maturity	Revised field maturity classification			
			Reproduct	tive cycle	
	Alaska	Goi	nadal growth	Maturation Sp	awning
	Sept Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug 2017 2018 30 \(\rac{7}{30} \)		G1	Late perinucleolar	2018

2. Reproduction


Staff involved: Teresa Fish, MSc APU (2018-2020), Crystal Simchick, Ian Stewart, Allan Hicks, Josep Planas


Funding: IPHC (2018-2020)

Publications (2): Fish et al. (2020) J. Fish Biol. 97: 1880–1885; Fish et al. (in review)


3. Growth

Research area	Research activities	Research outcomes	Relevance for stock assessment (SA)	SA Rank	Relevance for MSE	MSE Rank
Growth	Identification and application of markers for growth pattern evaluation Environmental influences on growth patterns	pattern evaluation	0141		Improve simulation of variability and allow for scenarios investigating	parameterization and validation for growth
	Dietary influences on growth patterns and physiological condition	Dietary influences on growth patterns and physiological condition	countates		climate change	projections

3. Growth

Research outcomes: • Effects of temperature on growth rates

• Temperature-specific molecular responses

Staff involved: Andy Jasonowicz, Crystal Simchick, Josep Planas

Funding: NPRB Grant#1704 (Sept. 2017-Feb. 2020)

Publications: Planas et al. (in preparation)

4. DMRs and Survival Assessment

Research area	Research activities	Research outcomes	Relevance for stock assessment (SA)	SA Rank	Relevance for MSE	MSE Rank
Mortality and survival assessment	Discard mortality rate estimate:	Experimentally-derived DMR Guidelines for reducing discard mortality	Improve estimates of unobserved mortality	2. Fishery yield		Fishery parameterization Fishery parameterization
	Best handling practices: recreational fishery	,		3. Fishery yield		

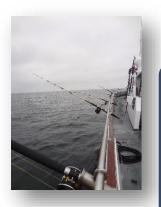
• Directed longline fishery

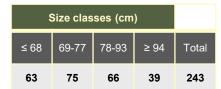
DMR
Best predictors of mortality
Best practices

4. DMRs and Survival Assessment

Research area	Research activities	Research outcomes	Relevance for stock assessment (SA)	SA Rank	Relevance for MSE	MSE Rank
Mortality and	Discard mortality rate estimate: longline fishery Discard mortality rate estimate: recreational fishery	Experimentally-derived DMR	Improve estimates of			Fishery parameterization Fishery parameterization
survival assessment	Best handling practices: longline fishery	Guidelines for reducing discard mortality	unobserved mortality	2. Fishery yield	stock productivity	
	Best handling practices: recreational fishery	Guidelines for reducing discard mortality		3. Fishery yield		

Guided recreational fishery





- Collect information on hook types and sizes and handling practices
- Investigate the relationship between gear types and capture conditions and size composition of captured fish
- Injury profiles and physiological stress levels of captured fish
- Assessment of mortality of discarded fish

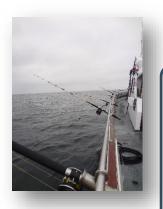
Sitka, AK (2C): 21 – 27 May 2021

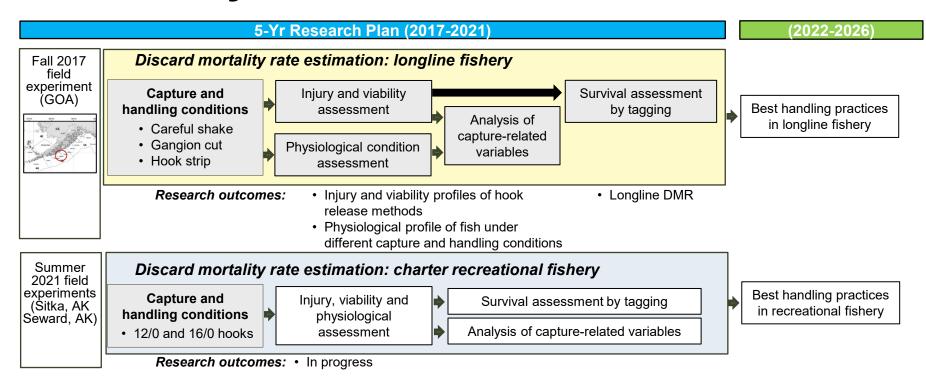
- Two gear sizes: 12/0 and 16/0 hooks
- Observations and samples: hooking time, time on deck, weight, length, hook injury type and picture, viability, fat content, fish temperature, blood sample, fin clip, wire tag.

4. DMRs and Survival Assessment

Research area	Research activities	Research outcomes	Relevance for stock assessment (SA)	SA Rank	Relevance for MSE	MSE Rank
Mortality and	Discard mortality rate estimate: longline fishery Discard mortality rate estimate: recreational fishery	Experimentally-derived DMR	Improve estimates of			Fishery parameterization Fishery parameterization
survival assessment	Best handling practices: longline fishery	Guidelines for reducing discard mortality	unobserved mortality	2. Fishery yield	stock productivity	
	Best handling practices: recreational fishery	Guidelines for reducing discard mortality		3. Fishery yield		

Guided recreational fishery




- Collect information on hook types and sizes and handling practices
- Investigate the relationship between gear types and capture conditions and size composition of captured fish
- Injury profiles and physiological stress levels of captured fish
- Assessment of mortality of discarded fish

Seward, AK (3A): 11 – 17 June 2021

Types of tags						
Wire	sPATs	Total				
38	80	118				

- Two gear sizes: 12/0 and 16/0 hooks
- Observations and samples: hooking time, time on deck, weight, length, hook injury type and picture, viability, fat content, fish temperature, blood sample, fin clip, wire tag.

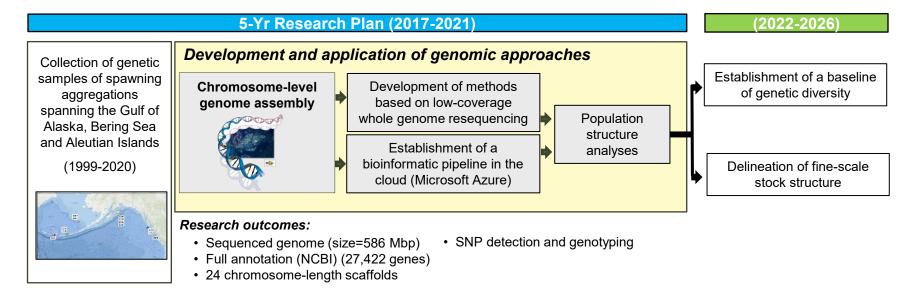
4. Mortality and Survival Assessment

Staff involved: Claude Dykstra, Allan Hicks, Ian Stewart, Josep Planas

Funding (3): S-K NOAA (Sept. 2017-Aug. 2020); NFWF(Apr. 2019-Nov. 2021); NPRB#2009 (Jan. 2021-Mar. 2022)

Publications (2): Kroska et al. (2021) Conserv. Physiol.; Loher et al. (2021) North Amer. J. Fish. Manag.(In Press)

5. Genetics and Genomics


Research area	Research activities	Research outcomes	Relevance for stock assessment (SA)	SA Rank	Relevance for MSE	MSE Rank
Genetics and	Population structure	Stock structure of IPHC Regulatory Area 4B relative to the rest of the Convention Area			Improve parametization	Biological parameterization and validation of movement estimates.
genomics	Distribution Payi	Assignment of individuals to source populations and assessment of distribution changes		3. Biological input		Biological parameterization and validation of recruitment distribution

Analysis of structure Revise our understanding of genetic in IPHC Regulatory structure of the Pacific halibut population in the North-eastern Pacific Ocean Area 4B 60°0'N 60°0′N 2007 55°0'N 2007 2020 2020 50°0′N Low-coverage whole-genome resequencing (5X) Genetic samples from ~50 individuals per winter collection (~600 total) spawning groups ~Millions of Single Nucleotide Polymorphisms (SNPs) collected in winter 45°0'N **Establishment of genetic baselines** 130°0′W 170°0′E 180°0′ 170°0′W 160°0'W 150°0′W 140°0′W

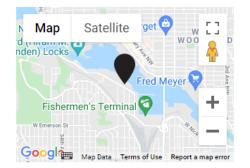
Pacific halibut genome

- Genomic analyses of population dynamics: stock structure and spatial connectivity.
- Identifying potential local and/or environmental adaptations.
- Provide genetic basis for life-history traits (e.g. growth, maturity, migratory behavior, etc.).

5. Genetics and Genomics

Staff involved: Andy Jasonowicz, Josep Planas

Funding: IPHC, NPRB#2110


Publications: Jasonowicz et al. (2022) Mol. Ecol. Resour. (In Review)

Externally-funded collaborative research

Project #	Grant agency	Project name	PI	Partners	IPHC Budget (\$US)	Management implications	Grant period
1	National Fish & Wildlife Foundation	Improving the characterization of discard mortality of Pacific halibut in the recreational fisheries (NFWF Award No. 61484)	IPHC Dr J. Planas and Mr Claude Dykstra	Alaska Pacific University, U of A Fairbanks, charter industry	\$98,902	Bycatch estimates	1 April 2019 – 1 November 2021
2	North Pacific Research Board	Pacific halibut discard mortality rates (NPRB Award No. 2009)	IPHC Dr. J. Planas	Alaska Pacific University	\$210,502	Bycatch estimates	1 January 2021 – 31 March 2022
3	Bycatch Reduction Engineering Program-NOAA	Gear-based approaches to catch protection as a means for minimizing whale depredation in longline fisheries (NOAA Award Number NA21NMF4720534)	IPHC Mr. Claude Dykstra and Dr. I. Stewart	Deep Sea Fishermen's Union, Alaska Fisheries Science Center-NOAA, industry representatives	\$99,700	Whale depredation	1 November 2021 - 30 April 2022
4	North Pacific Research Board	Pacific halibut population genomics (NPRB Award No. 2110)	IPHC Dr. J. Planas	Alaska Fisheries Science Center-NOAA	\$193,685	Stock structure	1 February 2022 – 31 January 2024
Total awarded (\$)					\$602,789		

Workshop on whale depredation mitigation

HOME > MEETINGS > 1ST INTERNATIONAL WORKSHOP ON PROTECTING FISHERY CATCHES FROM WHALE DEPREDATION (WS001)

SEATTLE, WA

IPHC Office, Salmon Bay 2320 W Commodore WAY Seattle, WA 98199

Adobe Connect Registration >

1st International Workshop on Protecting Fishery Catches from Whale Depredation (WS001)

Date: 9 February 2022

Location: Electronic

Venue: Adobe Connect

Time: 0900 - 1200

Chairperson: Claude Dykstra (Research Biologist)

Vice-Chairperson: Dr. Ian Stewart (Quantitative Scientist)

Synopsis:

Bringing together researchers, fishers, fishery managers and academics interested in novel approaches to protecting fish caught on commercial fishing gear from marine mammal depredation. The goal is to collectively share information on tools and approaches that have proven successful (or not), and to brainstorm some new or modified ideas and concepts for field testina.

INTERNATIONAL PACIFIC

