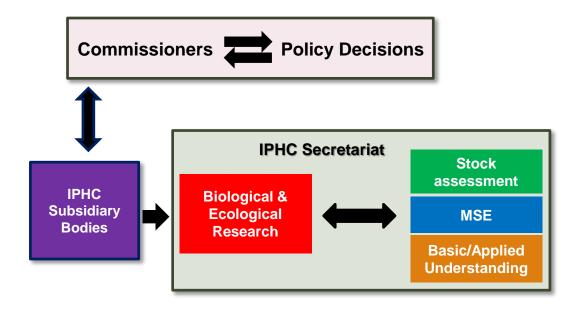
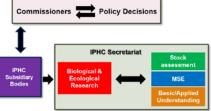


Outline


- Five-year research plan and management implications
- Progress on ongoing research projects
- Externally-funded collaborative research

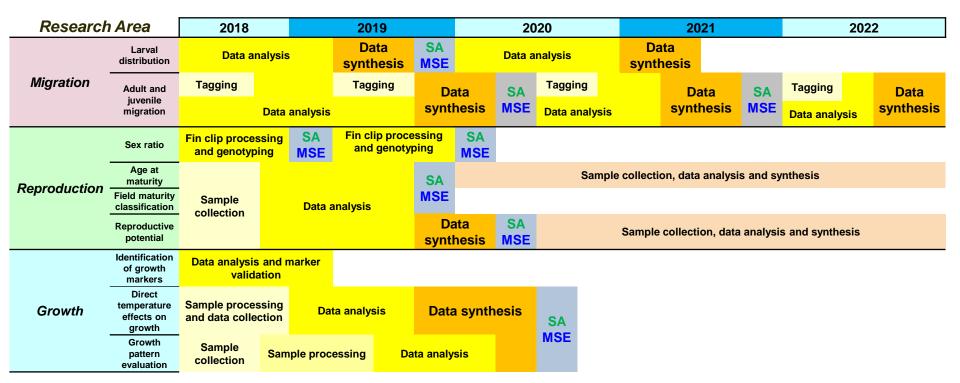
Five-year research plan and management implications


5-Year Biological and Ecosystem Science Research Plan

Primary Research Areas	Main Objectives	Management implications	
Migration	Improve understanding of migration throughout all life stages (larval, juvenile, adult feeding and reproductive migrations)	Stock distribution, regional management	
Reproduction	Information on sex ratios of commercial landings and improved maturity estimates		
Growth	Growth Improve understanding of factors responsible for changes in size-at-age and development of tools for monitoring growth and physiological condition		
DMRs and discard survival	- · · · · · · · · · · · · · · · · · · ·		
Genetics and genomics	Improve understanding of the genetic structure of the population and create genomic tools (genome)	Stock distribution, local adaptation	

Integration of biological research, stock assessment, and policy

Integration of biological research, stock assessment, and policy

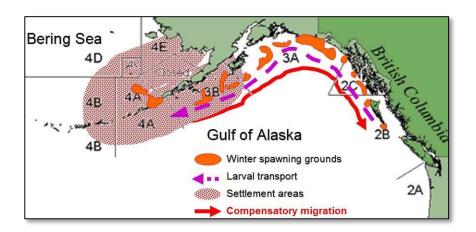

Biological research

Stock assessment

Stock assessment MSE

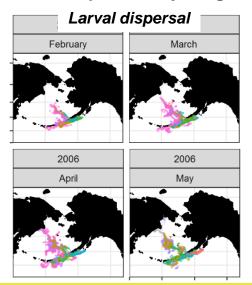
Research areas	Research outcomes	Relevance for stock assessment	Inputs to stock assessment and MSE development	
Migration	Larval distribution	Geographical selectivity	Information for structural choices Recruitment indices	
	Juvenile and adult migratory behavior and distribution	Stock distribution	Migration pathways and rates Timing of migration	
Reproduction	Sex ratio	Spawning biomass scale and trend	Sex ratio	
	Spawning output	Stock productivity	Maturity schedule	
	Age at maturity	Recruitment variability	Fecundity	
Growth	Identification of growth patterns	Temporal and spatial variation in growth	Predicted weight-at-age	
	Environmental effects on growth	Yield calculations	Fredicted Weight-at-age	
	Growth influence in size-at-age variation	Effects of ecosystem conditions Effects of fishing	Mechanisms for changes in weight-at-age	
Discard Survival	Bycatch survival estimates	Scale and trend in mortality	Bycatch and discard mortality estimates	
	Discard mortality rate estimates	Scale and trend in productivity	Variability in bycatch and uncertainty in discard mortality estimates	
Canatias and Canamias	Genetic structure of the population	Spatial dynamics	Information for structural choices	
Genetics and Genomics	Sequencing of the Pacific halibut genome	Management units		

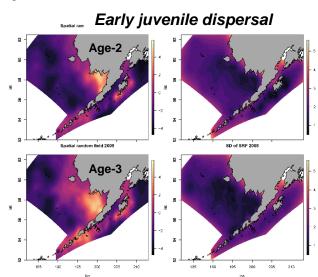
Integration of biological research, stock assessment, and policy: timelines

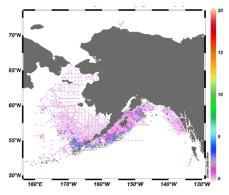


Progress on ongoing research projects

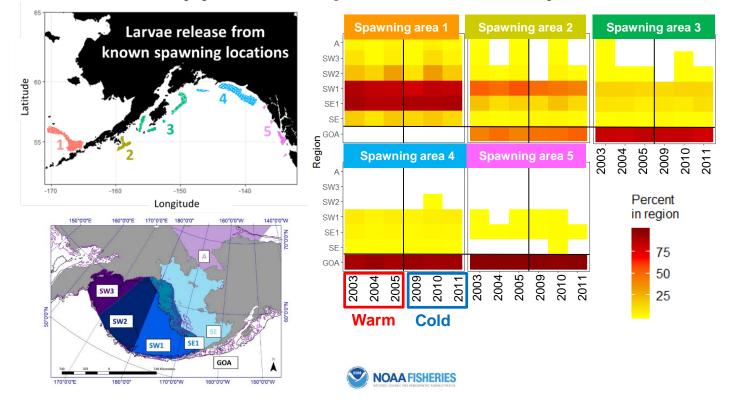
1. Migration and distribution


Projects:

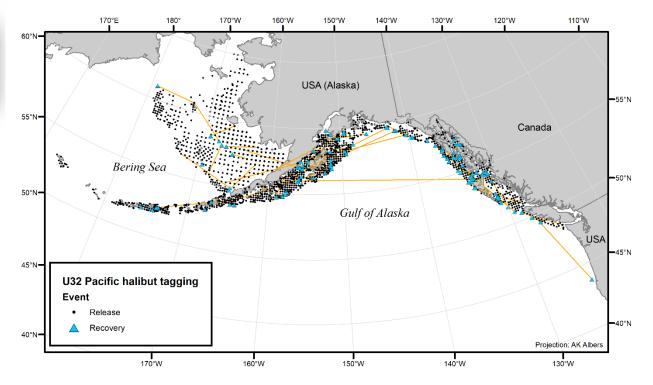

- 1. Larval and early juvenile dispersal
- 2. Late juvenile and adult migration



1. Larval and early juvenile dispersal


- Contribution of spawning grounds to settlement grounds
- Connectivity of ocean basins
- Environmental effects on larval distribution
- Collaboration with NOAA/EcoFOCI NOAAFISHERIES
- Dispersal of young fish post-settlement

1. Larval and early juvenile dispersal: connectivity between GOA and BS



2. Late juvenile and adult dispersal: wire tagging of U32 fish



Since 2015:

- 10,791 U32 fish wire tagged in FISS and NMFS Trawl Survey
- 132 recoveries

- 2. Late juvenile and adult dispersal: electronic tagging of U32 and O32 fish
 - In 2019 efforts were focused on the northeast Bering Sea shelf:
- Collaboration with Norton Sound Economic Development Corporation (NSEDC) and UAF to tag Pacific halibut (n = 44) with pop-up satellite (PAT) tags in the northeast Bering Sea
 - St. Lawrence
 - Norton Sound
 - NMFS Northern Bering Sea Trawl Survey

East-West North Pacific connectivity: developing international collaborations

W2: FIS Workshop

Integrating biological research, fisheries science and management of Pacific halibut and other widely distributed fish species across the North Pacific in the face of climate and environmental variability

Co-sponsors: IPHC

Duration:

1 day

Convenors:

Josep Planas, corresponding

(International Pacific Halibut Commission - IPHC)

Gordon Kruse

(University of Alaska Fairbanks, USA)

Chris Rooper (DFO, Canada)

Roman Novikov

(Kamchatka Research Institute of Fisheries and Oceanography, Russia)

Naoki Tojo

(Hokkaido University, Japan)

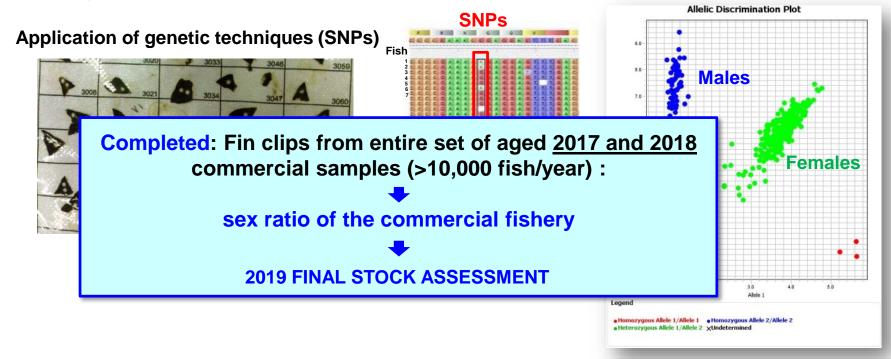
Invited Speakers:

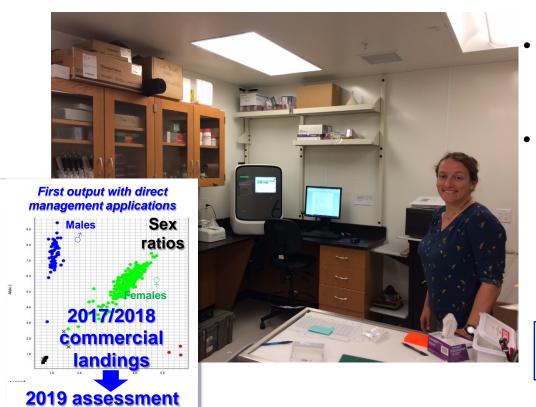
Janet Duffy-Anderson (NOAA, USA)

Mark Lomeli (PSMFC, USA)

David Wilson (IPHC)

Projects:


- 1. Sex ratio of the commercial landings
- 2. Full characterization of the annual reproductive cycle to improve current estimates of maturity



1. Identification of sex in the commercial landings

To generate sex-ratio data for use in assessment and policy analysis

Biological laboratory at IPHC: established in 2018

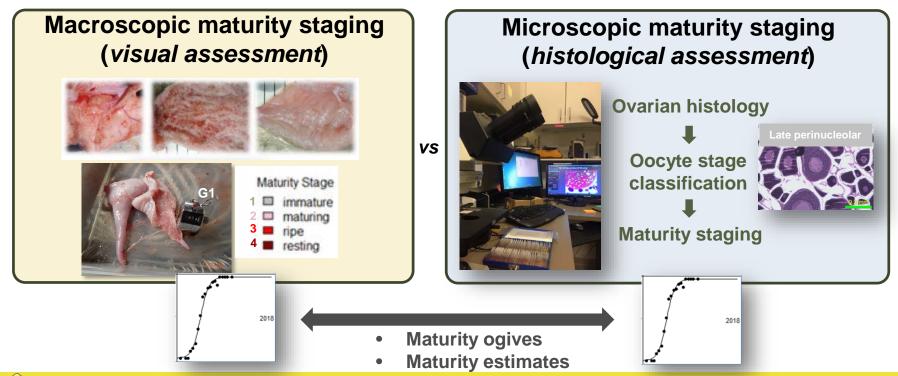
- Laboratory technician: Ms. Anna Simeon
 - Full time: 04/2018 03/2020
 - Salary co-financed by NPRB

Current lab capabilities:

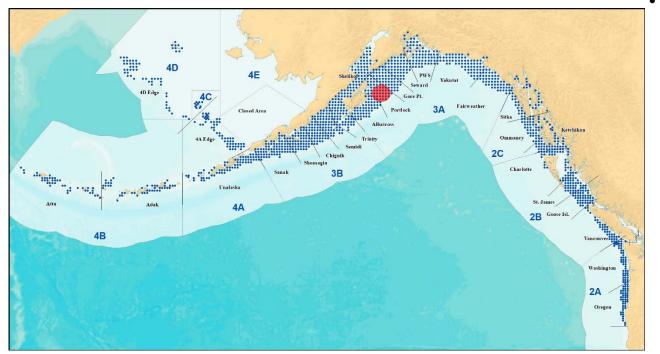
 Nucleic acid extraction and quantification Sex ratios/ genetics/ migration

- Genotyping
- Gene expression → Growth/reproduction
- Blood metabolite and hormone determinations

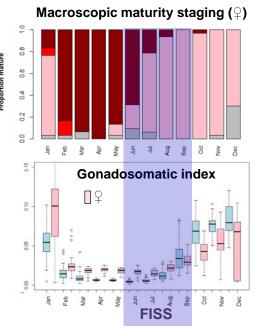
Discard survival/


Staff and student training

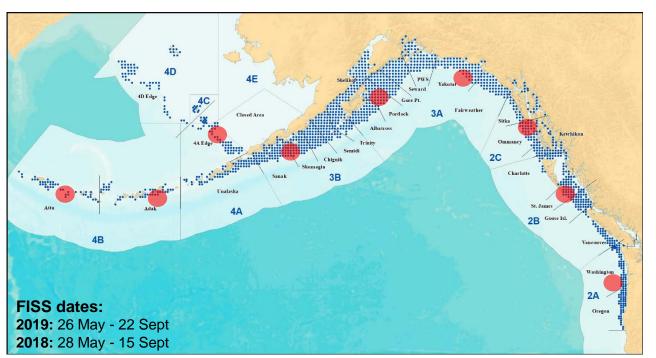
reproduction

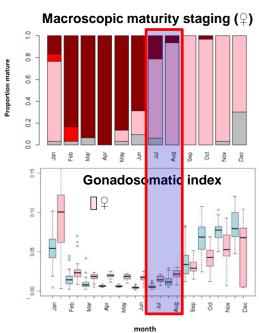

- Alaska Pacific University MSc Student: Ms. Teresa Fish
- 2019 IPHC Intern: Ms. Kennedy Bolstad
- High school Senior Project: Mr. David King

2. Full characterization of the annual reproductive cycle


Objective: Revise maturity estimates for female Pacific halibut

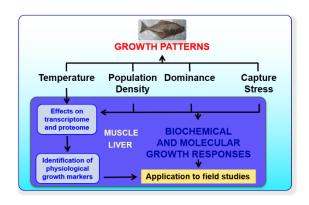
Female maturity information available from one region: Portlock



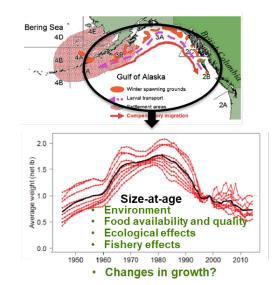

• Full annual collection (2018)

 Interannual collection June 2017, 2018, 2019

Proposed research: Spatial analysis of maturity



July-August collection in FISS


3. Growth

Projects:

- 1. Identification and validation of physiological markers for growth
- 2. Evaluation of growth patterns in the Pacific halibut population and possible effects of environmental variability

4. Discard mortality rates and survival assessment

Projects:

Provide direct estimations of DMRs in:

1. The directed longline fishery

2. The guided recreational fishery

4. DMRs and survival assessment

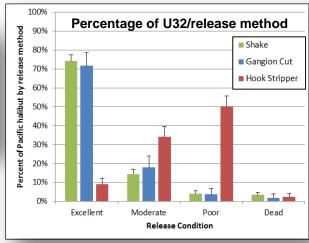
1. <u>Directed longline fishery</u>: A. Relationship between <u>handling practices</u> and <u>injury levels</u> and <u>physiological condition</u> of released Pacific halibut

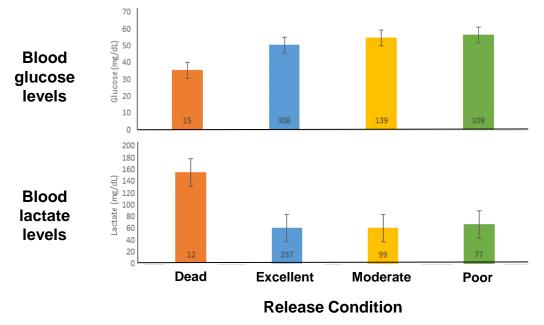
- Assessed *injuries* associated with release techniques (careful shake, gangion cut,

hook stripping).

Physiological condition of released fish

Condition factor indices


Capture conditions



Stress indicators:

- ✓ Glucose
- ✓ Lactate
- ✓ Cortisol

4. DMRs and survival assessment

- 1. <u>Directed longline fishery</u>: A. Relationship between <u>handling practices</u> and <u>injury levels</u> and <u>physiological condition</u> of discarded Pacific halibut
 - Physiological condition of discarded fish: Stress indicators by release condition

Physiological predictors of survival

4. DMRs and survival assessment

2. Guided recreational fishery: Estimation of DMRs

Project initiated in 2019

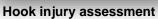
Objectives:

2019

1. Collect information on hook types and sizes and handling practices: Completed

2020

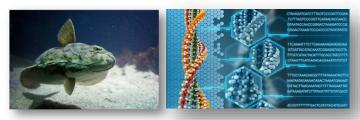
- Investigate the relationship between gear types and capture conditions and size composition of captured fish
- 3. Injury profiles and physiological stress levels of captured fish
- 4. Assessment of mortality of discarded fish

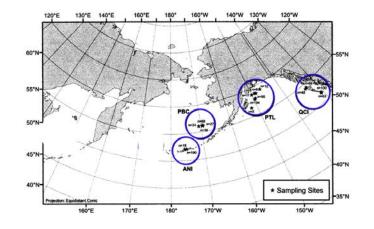


Sport charter

Captured Pacific halibut

Tagging with sPATs

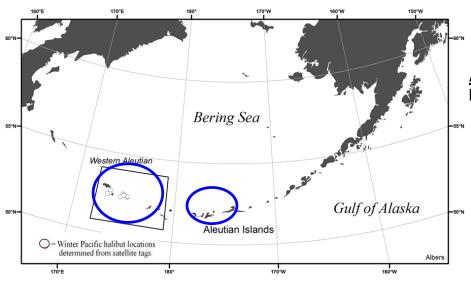




5. Genetics and Genomics

Projects:

- 1. Genetic structure of the Pacific halibut population and distribution
- 2. Genome sequencing

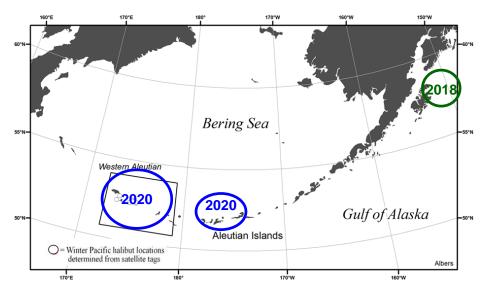


New research position:

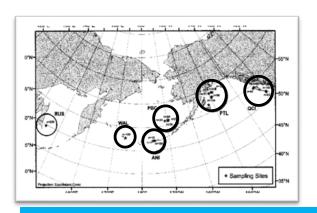
Genetics
Mr. Andy Jasonowicz
1 yr- contract
8/26/2019-8/25/2020

5. Genetics and Genomics

- Genetic structure of the Pacific halibut population:
 - 1. Reg. Area 4B Structure: Eastern vs Western Aleutian Islands



<u>Aim</u>: Investigate potential genetic differences between Central and Western Aleutian Islands


- 1. Collect winter genetic samples (winter 2020)
- 2. Conduct genetic analyses

5. Genetics and Genomics

- Genetic structure of the Pacific halibut population:
 - 2. Identification of potential genetic signatures of origin (baseline signals)

<u>Aim</u>: Establish genetic baselines from known spawning groups to conduct assignment studies and determine the genetic population structure coastwide

Aim: Revised population structure

Genetic analyses using:

New samples (2018, 2020) Previous samples (early 2000s)

Outline

- Five-year research plan and management implications
- Progress on ongoing research projects
- Externally-funded collaborative research

Externally-funded collaborative research

Project #	Grant agency	Project name	PI	Partners	IPHC Budget (\$US)	Management implications	Grant period
1	Saltonstall-Kennedy NOAA	Improving discard mortality rate estimates in the Pacific halibut by integrating handling practices, physiological condition and post-release survival (Award No. NA17NMF4270240)	IPHC	Alaska Pacific University	\$286,121	Discard estimates	September 2017 – August 2020
2	North Pacific Research Board	Somatic growth processes in the Pacific halibut (<i>Hippoglossus stenolepis</i>) and their response to temperature, density and stress manipulation effects (<i>NPRB Award No. 1704</i>)	IPHC	AFSC-NOAA-Newport, OR	\$131,891	Changes in biomass/size- at-age	September 2017 – February 2020
3	Bycatch Reduction Engineering Program - NOAA	Adapting towed array hydrophones to support information sharing networks to reduce interactions between sperm whales and longline gear in Alaska	ALFA	IPHC, University of Alaska Southeast, AFSC-NOAA	-	Whale Depredation	September 2018 – August 2019
4	Bycatch Reduction Engineering Program - NOAA	Use of LEDs to reduce Pacific halibut catches before trawl entrainment	PSMFC	IPHC, NMFS	\$1,750	Bycatch reduction	September 2018 – August 2019
5	National Fish and Wildlife Foundation	Discard mortality rate characterization in the Pacific halibut recreational fishery (NFWF Award No. 61484)	IPHC	UA Fairbanks, APU, Grey Light Fisheries, Alaska Charter Association	\$98,901	Discard estimates	2019-2020
				Total awarded (\$)	\$518,663		

INTERNATIONAL PACIFIC

