

Space-time modelling of survey data

Agenda item 6.2 IPHC-2019-AM096-07

Boito

Overview

- 1. Review of survey data sources and space-time modelling
- 2. Space-time model estimates of WPUE and NPUE
- 3. Regulatory Area 2C gear comparison
- 4. 2019 Fishery-Independent Setline Survey (FISS) expansions
 - IPHC Regulatory Areas 3A and 3B
- 5. FISS rationalisation
 - Methods
 - Proposals for 2020-22 FISS sampling seasons

Review of survey data sources

- IPHC fisheries-independent setline survey (FISS):
 - Primary data source for space-time modelling of WPUE and NPUE indices
 - 10 nmi grid design since 1998, with fixed FISS stations and standardised fishing methods
 - Grid design ensures all habitat is sampled in proportion to its occurrence (on average)
 - Fixed FISS stations reduces variance in trend estimates
 - Gaps in annual coverage
 - Accounted for using data from other surveys, FISS expansions, and space-time model predictions into unsurveyed habitat

Review of survey data sources

- NMFS fisheries-independent Bering Sea trawl survey:
 - Important data source for WPUE and NPUE indices in the Bering Sea (Regulatory Areas 4A and 4CDE)
 - 20 nmi grid design since 1982, with higher station density in some regions
 - Northern expansions fished in 2010, 2017-19
 - Data are calibrated with IPHC Bering Sea setline survey expansion data from 2006 and 2015
 - Provides WPUE and NPUE indices consistent with those from the IPHC setline survey
- ADFG fisheries-independent Norton Sound trawl survey:
 - Data source for WPUE and NPUE indices in the northern Bering Sea (Regulatory 4CDE)
 - Fished triennially until 2014, and annually from 2017

Review of space-time modelling

- Space-time modelling of survey data has been used since 2016 to produce WPUE and NPUE estimates
- The modelling has two key purposes:
 - It smooths the data in time and space
 - Makes use of information on spatial and temporal relationships among survey stations to "sort the signal from the noise"
 - It fills in gaps in survey coverage using model predictions, while accounting for uncertainty

Space-time model estimates of WPUE and NPUE

- As in 2016-18, the space-time modelling was used to estimate WPUE and NPUE indices
- Estimates computed for:
 - Biological Regions
 - IPHC Regulatory Areas
 - Coastwide IPHC Convention waters, from San Francisco Bay to Bering Strait

O32 WPUE by biological region

All sizes NPUE by biological region

Gear comparison study

- Each station in Regulatory Area 2C was fished twice, once with fixed gear, and once with snap gear
- Space-time modelling included parameters allowing for gear differences in catch rates
- There was some evidence that snap gear had lower catch rates than fixed gear
 - Model estimated WPUE and NPUE on snap gear was 86% of that on fixed gear
 - Uncertainty was high, with 95% intervals of 75-100%
- Results imply the need to collect additional data
 - to better understand the relative efficiency of the gears
 - to understand potential variability over time and space

Gear comparison study

- Nevertheless, with the gear calibration accounted for in the model, we did include snap gear data in the models used to produce indices for Regulatory Area 2C in 2020
- Inclusion of snap gear data together with fixed gear data had no meaningful effect on estimates of WPUE and NPUE time series
- As estimation of calibration coefficient between snap and fixed gear improves, data from both gears will likely be of equal value

2019 setline survey expansions

- 2019 was the 6th and final year of a program of setline survey expansions
- The goal was to collect data in previously unsurveyed regions to reduce bias and uncertainty in WPUE and NPUE indices
- Setline survey expansions to date (with previously unsampled % of stations):
 - 2014: Regulatory Areas 2A and 4A (42%)
 - 2015: Regulatory Area 4CDE eastern Bering Sea flats
 - 2016: Regulatory Area 4CDE shelf edge (62%)
 - 2017: Regulatory Areas 2A (46%) and 4B (55%)
 - 2018: Regulatory Areas 2B (42%) and 2C (25%)
 - 2019: Regulatory Areas 3A (18%) and 3B (19%)

Regulatory Area 3A

All sizes NPUE 40 500 All sizes NPUE (halibut/skate) 2019 output 032 WPUE (Ib/skate) 2018 output 30 400 300 20 200 10 · 2019 output 100 2018 output 0 0 1995 2000 2005 2010 2015 1995 2000 2005 2010 2015 Year Year

Regulatory Area 3B

O32 WPUE

FISS expansion summary

- The FISS occupied for the first time 34% of the full grid that had previously been unsurveyed
- The result was an improved understanding of Pacific halibut density and distribution
 - Bias was reduced, with indices for several Regulatory Areas being revised upwards or downwards
 - Uncertainty in estimates of WPUE and NPUE was reduced in most Regulatory Areas
 - These improvements were apparent throughout the time series, not only in the year of the expansion
- Moving forward, revisiting the "new" stations from the 2014-19 expansion is unlikely to have such large effects on the entire time series

FISS priorities

Priority	Objective	Design Layer
Primary	Sample <u>Pacific halibut</u> for stock assessment and stock distribution estimation	 Minimum sampling requirements in terms of: Station distribution Station count Skates per station
Secondary	Long term revenue neutrality	Logistics and cost: operational feasibility and cost/revenue neutrality
Tertiary	<u>Minimize removals</u> , and <u>assist</u> <u>others where feasible</u> on a cost- recovery basis.	Removals: minimize impact on the stock while meeting primary priority Assist: assist others to collect data on a cost- recovery basis IPHC policies: ad-hoc decisions of the Commission regarding the FISS design

Full FISS design

Example 1: Randomised design

Example 2: Randomized cluster design

Developing and evaluating FISS design proposals

- Set data quality targets
- Determine geographic sampling priorities and sampling frequency
- Test designs on simulated data sets
- Propose design options
- Estimate design costs

Precision targets

• To maintain data quality, we proposed the following targets on coefficient of variation (CV):

Management unit	O32 WPUE	All sizes WPUE	All sizes NPUE
Reg Area (all)	15%	15%	NA
Bio Regions 2, 3, 4	10%	10%	10%
Bio Region 4B	15%	15%	15%
Coastwide	NA	NA	10%

Potential for bias

- Failure to observe and account for changes in WPUE or NPUE in an unsurveyed subarea can lead to bias
- Therefore, it is important to undertake the FISS frequently enough to keep any bias small

Evaluation of options

- Fit models using simulated data for future years
- Models can take a long time to run: full simulation study using many data sets not practical
- Instead, for each year, single simulated sample data sets were taken from the posterior samples from the modelling

Core Regulatory Areas

- Regulatory Areas 2B to 3B comprise the current core of the Pacific halibut stock
- Generally high relative density throughout these areas
- We considered two design options:
 - 1) Randomised sampling
 - 2) Subarea sampling, in which not all FISS regions are sampled each year
 - This option places a high priority on logistics (Secondary Objective)

Regulatory Areas 2A, 4A and 4B

- These Regulatory Areas each contain local areas of relatively high and low densities
- Evaluations of subarea-based designs show Primary Objectives can be met by
 - Prioritising the sampling of high density, temporally variable subareas by sampling these frequently (e.g. annually)
 - Sampling other subareas less frequently

Regulatory Area 4B subareas

Regulatory Area 4B biomass % by subarea and year

Reg Area 4B sampling priorities

- 1. Subarea 3: 70-80% of biomass since 2013
- 2. Subarea 1: Frequent large changes in biomass % over short periods
- 3. Subarea 2: Generally low and stable biomass % (but likely affected by sparse historic sampling)

Proposal for sampling: 2020-2022

- 2020. Subarea 3 only (73 stations)
- 2021. Subarea 3 only (73 stations)
- 2022. Subareas 1 and 2 (130 stations)

Regulatory Area 4A subareas

longitude (deg W)

Slide 28

Reg Area 4A sampling priorities

- 1. Subarea 1: 65-85% of biomass, variable biomass proportion
- 2. Subarea 3: Variable biomass %
- 3. Subarea 2: Low density, stable proportion

Proposal for sampling: 2020-2022

- 2020. Subarea 1 only (59 stations)
- 2021. Subarea 1 only (59 stations)

2022. Subareas 1 and 3 (122 stations)

Regulatory Area 2A subareas

Reg Area 2A sampling priorities

- 1. Subarea 1: 60-70% of biomass
- 2. Subarea 2: Moderate density, stable proportion
- 3. Subarea 3: Low density

Proposal for sampling: 2020-2022

- 2020. Subarea 1 only (72 stations)
- 2021. Subarea 1 only (72 stations)
- 2022. Subarea 1 only (72 stations)

Regulatory Area 4CDE

- Regulatory Area 4CDE estimation depends heavily on other surveys
- While it may be possible to reduce FISS sampling and still meet precision/bias targets, we note:
 - Ecosystem conditions have been anomalous in the Bering Sea for several years, making the Pacific halibut distribution more difficult to predict in unsurveyed habitat
 - The IPHC has increased interest in better understanding density trends and possible links with Russian waters
- Therefore, we propose repeating the full FISS grid on the Regulatory Area 4D shelf edge, last fished in 2016

Planning beyond three years?

- As new data become available each year, sampling priorities and bias potential for subsequent years can be re-evaluated
 - Subarea definitions and sampling priorities will evolve with changes in relative density of Pacific halibut
- Given the likely future changes in density and distribution, we did not consider evaluating sampling designs beyond three years

Biological sampling

- The IPHC also has biological sampling targets in each regulatory area.
 - 2000 otoliths/Regulatory Area
- Those targets are already difficult to meet in some areas, particularly Regulatory Areas 2A and 4CDE.
- Any reduction in the annual survey footprint will make meeting those targets more challenging
- Where possible, additional skates/set can be used to mitigate reductions in stations

Putting it all together

- Determine priorities and costs for each Regulatory Area (or Biological Region) for the next three years
 - For Bio Region purposes, whole Reg Areas could be omitted from the survey in some years
- If necessary, rearrange the annual sampling order of subareas to be fished to avoid exceeding overall budget limits
- Each year, re-evaluate priorities and projected costs following data collection on the setline survey
- Modify subsequent years' plans if necessary to reflect new data and revised cost projections

Design proposals for 2020-22

- The following designs represent minimum designs for meeting the Primary Objective of sampling Pacific halibut for the assessment/stock distribution
- They can be added to in order to meet other objectives related to science, logistics/cost, and resource extraction/policy.

- This design depends entirely on fishing subareas, i.e. large clusters of adjacent stations
- While it meets the Primary Objective, it also heavily emphasizes the Secondary Objective by accounting for logistics and cost.

- Preferred option of the IPHC Secretariat
- Uses a randomised design in the core Regulatory Areas, and a subarea design elsewhere
- The focus is on the Primary Objective, but operational efficiency is considered by fishing low-density and/or stable subareas less frequently

Recommendations

- That the Commission:
- **NOTE** paper IPHC-2020-AM096-07 which provides alternatives for FISS sampling in 2020 ranging from the full grid to randomised and subarea options.
- **ENDORSE** the preferred design (Proposal 2) for the IPHC Secretariat to employ, commencing in 2020.
- **PROPOSE** any specific additions or modifications to that design that the IPHC Secretariat should consider in evaluating the three design criteria: Scientific, logistical/cost, and resource extraction/policy.

INTERNATIONAL PACIFIC

INTERNATIONAL PACIFIC HALIBUT COMMISSION

