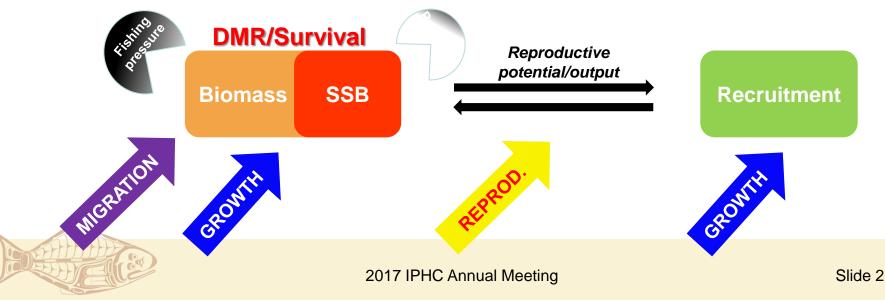
IPHC 5-year Research Program

IPHC-2017-093-11

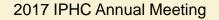
Josep V. Planas Biological and Ecosystem Science Program Manager

January 23-27, 2017


IPHC Annual Meeting

Primary research activities at IPHC

Primary objectives


- Identify and address critical knowledge gaps in the biology of the Pacific halibut
- Understand the influence of environmental conditions on halibut biology
- Apply resulting knowledge to reduce *uncertainty* in current stock assessment models

Primary research activities at IPHC

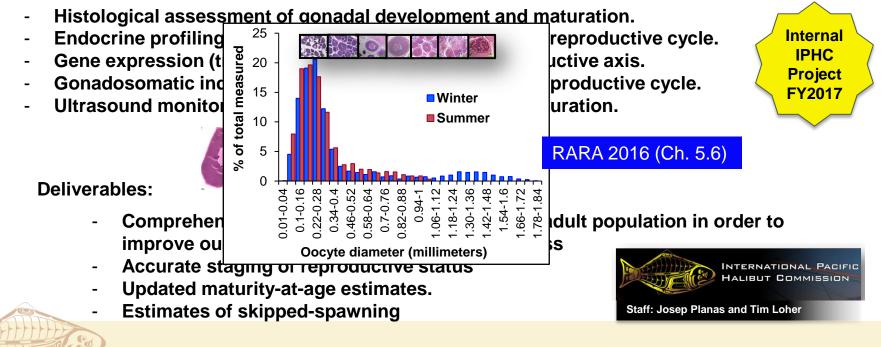
1. Reproduction: proposed studies

There are important knowledge gaps on the reproductive biology of the species

- SEX RATIO OF CATCH
- IMPROVED MATURATION ESTIMATES OF SPAWNING BIOMASS

What is needed?

- Knowledge on reproductive development, maturation, fecundity, sex determination mechanisms (sex identification), environmental and hormonal control of reproduction.
- Scientific-based criteria to identify reproductive status and potential.
- Updated estimates of age and size at maturation.
- Information on skipped spawning.

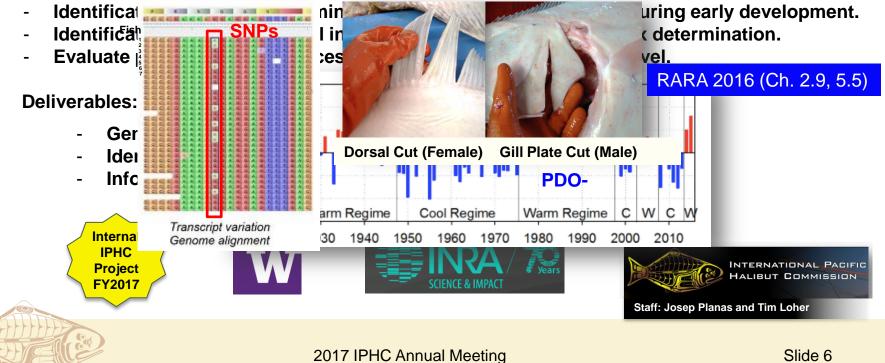

New proposed studies:

- Full characterization of the annual reproductive cycle
- Identification of sex determination mechanism(s) and influencing factors

1. Reproduction: proposed studies

• Full characterization of the annual reproductive cycle

Objective: Understand temporal changes in reproductive development throughout an entire annual reproductive cycle in male and female Pacific halibut



1. Reproduction: proposed studies

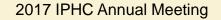
Identification of sex determination mechanisms

Objective: Understand how sex is established in Pacific halibut

- Identification of genetic sex markers: Validation of the coast-wide sex-marking project

2. Growth: proposed studies

Little is known regarding what factors influence growth in this species


- CHANGES IN SIZE AT AGE/BIOMASS
- TOOLS TO ASSESS FISH CONDITION

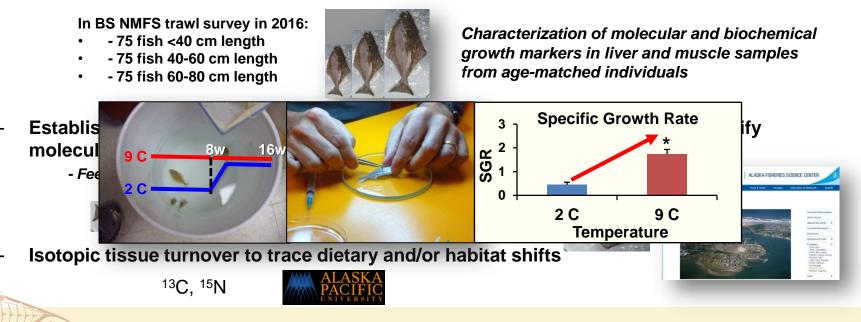
What is needed?

- Knowledge on growth patterns and environmental influences.
- Improved understanding in the possible role of growth alterations in the observed decrease in size at age.

New proposed studies:

- Extensive catalogue of physiological markers to monitor growth
- Evaluation of growth patterns and effects of environmental influences

2. Growth: Annotation Symbol (nt) Identi Annotation Symbol (1/26 Ref


	Annotation	symbol	(nt)	Identity (%)	Function	
	Androgen receptor	ar	4426	81.48	Protein synthesis	
 Extensive catale 	Calcium/calmodulin-dependent protein kinase II alpha	camk2a	2342	87.27	Force transmission	
	Creatine kinase, muscle a	ckma	2256	89.76	Energy metabolism	
	Carnitine palmitoyltransferase 1B	cpt1b	762	81.82 🖕	Lod metabolism	
Objective: Identify	Dystrophin	dmd	1282	75.13	Force transmission	th studies.
Objective. Identity	Eukaryotic translation initiation factor 4eb	eif4eb	1168	25.15	Protein synthesis	in siuules.
	F-box protein 32	fbxo32	695	66.25	Proteinatrophy	
 Identification of ex 	Glycogen synthase 1	gys1	3328	89.47	En rey metabolism	ver.
	Histone deacetylase 1	hdac1	2191	96.35	Muscle repressor	
 Develop molecula 	Insulin-like growth factor 2 receptor	igf2r		70.6	Growth regulator	ant tissues.
	insum-like growth factor binding protein 5b	igfbp5b	1372	101	Growth regulator	
	Lipoprotein lipase	mof2 b	1789	0.48	Lipid metabolism	
	Myocyte enhancer factor 2cb		5841	79.8	Muscle growth	
	Myostatin b	mstnb	78	95.74	Growth regulator	
	Mechanistic target of rapamycin	mtor	CO 15	97.92	Protein synthesis	
	Myogenic factor 6	myf6		76 11	Muscle growth	
	Myosin, heavy polypeptide 1.3, skeletal muscle	my iz 1 3	246	86.42	Muscle growth	
3. De novo Transcripton	Myoblast determination protein 1 homolog	nved	2497	72.67	Muscle development	
Sample ID Total trinity 'genes'	Myozenin 1a	myoz1a	795	74.6	Force transmission	
	Nuclear factor of activated T-cells, cytoplasmic 3	nfatc3		62.96	Muscle activity	
R116-pool1 37,161	Paired box 3a	рахЗа 🧹 🧲	269	75	Muscle development	TE MUSCLE
R116-pool2 38,143	Paired box 7b	par 7b	297	85.71	Muscle development	R
R116-pool5 70,693	Peroxisome proliferator-activated receptor gamma, coactivator 1 alpha	pp , c a	519	88.7	Energy metabolism	MUSCLE
5.1 Mapping statistics	Protein phosphatase 3, catalytic subunit, alpha isozyme	ррр3са	3407	83.69	Muscle activity	
	Protein kinase, AMP-activated, alpha 1 catalytic subunit	prkaa1	1925	70.96	Energy metabolism	-
	Phosphorylase, glycogen, muscle	pygma	5514		A = 0.4 c (Ob = 7)	F
R116-pool2 13,2	Serum response factor	srf	4393	RAF	RA 2016 (Ch. 5.7)	
R116-pool5 25,3	Transforming growth factor, beta 1a	tgfb1a	561	77.04	Growth regulator	
	Tripartite motif containing 63b	trim63b	2117	81.16	Protein atrophy	
Deliverables	•					

Deliverables:

- Establishment of a growth-related gene sequence dataset
- Molecular assays to monitor growth patterns

2. Growth: proposed studies

- Evaluation of growth patterns and effects of environmental influences Objective: Identify molecular, biochemical and isotopic profiles characteristic of specific growth patterns and evaluate potential effects of environmental influences.
 - Evaluation of different growth trajectories in the wild.

2. Growth: proposed studies

- Investigate the effects of environmental factors on growth performance.
 - Effects of temperature, salinity, dissolved oxygen and water pH on growth.
 - Identify the optimal environmental conditions for growth.
- Understand the basis of the sexual dimorphic growth in the Pacific halibut.
 - **Deliverables:**
 - Identification and validation of growth markers for field studies
 - Characterization of molecular and biochemical growth signatures
 - Environmental effects on somatic growth
 - Improved biological inputs on biomass estimates

INTERNATIONAL PACIFIC HALIBUT COMMISSION

Staff: Josep Planas and Dana Rudy

2017 IPHC Annual Meeting

Little is known regarding the factors that influence bycatch survival

BYCATCH SURVIVAL ESTIMATES

What is needed?

 To introduce quantitative measurable factors that are linked to fish handling practices and to fish physiological condition and ultimately to survival in order to improve current DMR estimations

New proposed studies:

- Evaluation of the effects of fish handling practices on injury levels and the physiological condition of captured Pacific halibut
- Investigate the relationship between physiological condition post-capture and survival as assessed by the use of accelerometer tags.
- Improving estimates of survival of Pacific halibut caught in the trawl fishery

 Evaluation of the effects of fish handling practices on injury levels and the physiological condition of captured Pacific halibut

Objective: Understand relationship between handling practices and physiological condition of captured Pacific halibut in the longline fishery

- Assess injuries associated with release techniques (gangion cut, careful shake, hook straigthening).
- Determine the physiological condition of all captured fish with associated injury levels after different deck exposure times: condition factor index (Kn), energy (fat) levels, morphometric analyses.
- Measure the levels of stress and physiological disturbance indicators in the blood of all captured fish (cortisol, lactate, glucose, potassium, hematocrit).

Deliverables:

- Injury profile for different release techniques in the longline fishery
- Physiological assessment of fish handling practices: fish condition index post-capture

- Investigate the relationship between physiological condition postcapture and survival as assessed by tagging.
- **Objective:** Measure survival post-release in Pacific halibut and link this with the physiological condition and capture-related events
 - Tag fish that have been exposed to different handling practices in the longline fishery with accelerometer tags in addition to conventional tags (wire).
 - Assess survival of fish according to size and physiological conditon.
 - **Deliverables:**
 - Information on post-release survival in relation to handling practices and physiological condition.
 - Information on post-release survival in relation to size.

INTERNATIONAL PACIFIC Halibut Commission

Staff: Josep Planas, Claude Dykstra, Tim Loher, Ian Stewart, Allan Hicks

2017 IPHC Annual Meeting

Improving estimates of survival of Pacific halibut in the trawl fishery

Objective: Assess the condition non-directed trawl fishery an

- Continue and capitalize control
 collaborative research on
- Apply methods to assess
- Determine survival rates of discarded halibut after tagging.
- Relate physiological condition with survival rates of discarded halibut

Deliverables:

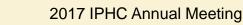
- Improved knowledge of survival of discarded halibut and, consequently, improved estimates of discard mortality rates in the trawl fishery.

discarded Pacific halibut in the nates of discard mortality rates

.g. Amendment 80 fleet) to plan

captured halibut.

4. Migration: proposed studies


- LARVAL DISPERSAL
- ADULT FEEDING AND REPRODUCTIVE MIGRATION

What is needed?

- Improve our understanding on larval, juvenile and reproductive migration.
- Incorporate additional sources of biological information on migration.

New proposed studies:

- Towards a more integrative view on migration
- Larval migration and connectivity
- Swimming and migratory performance

4. Migration: proposed studies

Towards a more integrative view on migration

Objective: Combine current tagging efforts with genetic and otolith and tissue composition analyses.

- Genetic analyses of tagged fish to shed light on migration patterns and geographic origin. -
- Otolith microchemical and stable isotope analyses and tissue stable isotope analyses. -
- Reproductive monitoring of PAT-tagged adult females: blood endocrine reproductive parameters, ovarian tissue biopsies and ultrasound for ovarian staging.

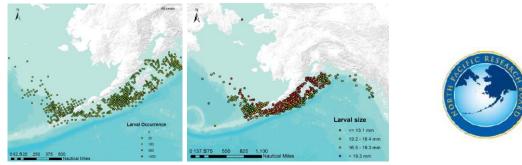
Deliverables:

- Genetic and elemental and isotopic information on migratory adult fish
- Improved knowledge on reproductive migrations and identification of spawning areas

Tail pattern recognition

INTERNATIONAL PACIFIC HALIBUT COMMISSION

Staff: Tim Loher, Josep Planas, Claude Dykstra, Tracee Geernaert


2017 IPHC Annual Meeting

4. Migration: proposed studies

Larval migration and connectivity

Objective: Understand the mechanisms of larval connectivity between GOA and BS.

- Collect data from the NMFS icthyoplankton survey and map larval distribution over time and space.
- Collect larval samples from the survey to conduct genetic analyses.

Collaboration with Janet Duffy-Anderson, Esther Goldstein, William Stockhausen (NOAA-AFSC)

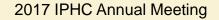
Deliverables:

- Improved knowledge on larval distribution, migration and genetic structure within the population

INTERNATIONAL PACIFIC HALIBUT COMMISSION

Staff: Lauri Sadorus, Josep Planas

5. Genetics and genomics: proposed studies

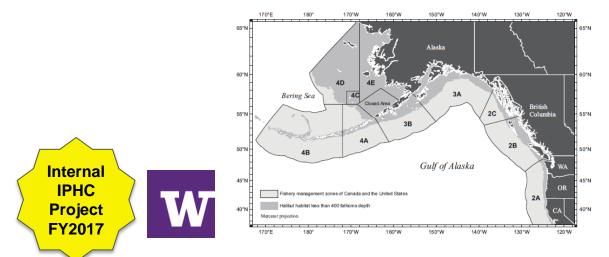

- GENETIC STRUCTURE OF THE POPULATION
- GENOMIC TOOLS (e.g. GENOME)

What is needed?

- Improved knowledge on the genetic composition of the population
- Establish genomic resources for the species
- Genome-wide association studies to evaluate genetic effects of fisherydependent and fishery-independent influences on growth, reproduction, nutrition, etc.

New proposed studies:

- Population genetic studies
- Sequencing of the Pacific halibut genome



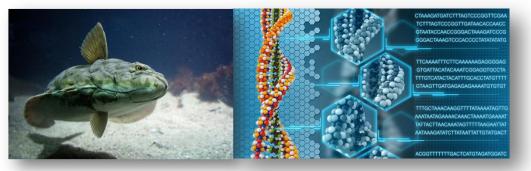
5. Genetics and genomics: proposed studies

Population genetic studies

Objective: Genetic characterization of Pacific halibut throughout its distribution range

- Characterization of population structure by RAD sequencing and SNP analysis.
- Identification of genetic signatures of geographical population groups

INTERNATIONAL PACIFIC HALIBUT COMMISSION


Staff: Josep Planas, Tim Loher

2017 IPHC Annual Meeting

5. Genetics and genomics: proposed studies

Pacific halibut genome

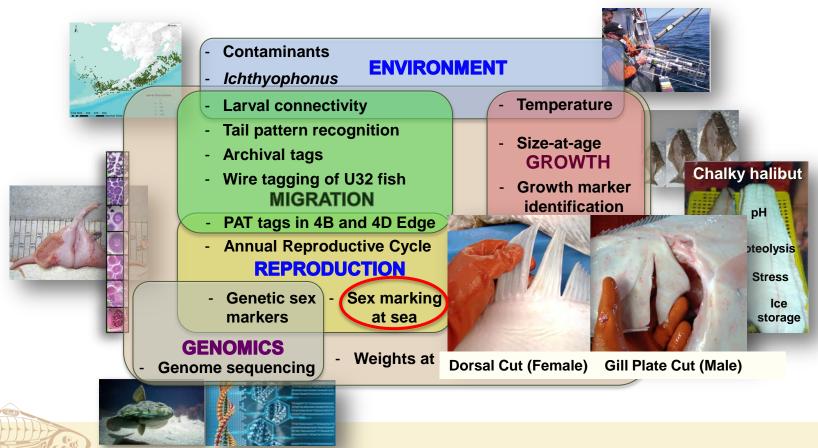
Objective: Obtain a first draft sequence of the Pacific halibut genome

- Provide genomic resolution to genetic markers (SNPs or transcripts).
- Identify genomic regions and genes responsible for temporal and spatial adaptive characteristics.

Internal IPHC Project FY2017

- Genome-wide association studies to try to understand the genetic basis of growth, reproductive performance, migratory behavior and performance, etc.
- Link genotype and phenotype.

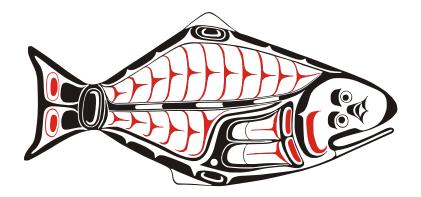
Temporal chart of activities


	2016	2017	2018	2019	2020	2021
		Anı	nual reproductive cy	/cle		
Reproduction			Sex determinati	on mechanisms		
	Sex iden	tification				

Research projects proposed for 2017

Project #	Project Name	Priority	Budget (US\$)	Principal Investigator	Management implications	
New Projec	ts					
2017-01	Full characterization of the annual reproductive cycle	High	91,098	Planas	Maturity assessment	
2017-02	Investigation of Pacific halibut dispersal on Bowers Ridge	High- Medium	124,527	Loher	Spawning areas	
2017-03	Tail pattern recognition analysis in Pacific halibut	High	2,370	Dykstra	Adult distribution	
2017-04	Condition Factors for Tagged U32 Fish	High	13,000	Dykstra	DMR estimates	
2017-05	Identification and validation of markers for growth	High	27,900	Planas	Changes in biomass/ size-at-age	
2017-06	Discard mortality rates and injury classification profile by release method	High- Medium	16,123	Dykstra	DMR estimates	
2017-07	Sequencing the Pacific halibut genome	High	22,500	Planas	Population estimate	
Continuing Projects						
621.15	Voluntary at-sea sex marking	High	18,120	Loher	Stock spawning biomass	
621.16	Development of genetic sexing techniques	High	146,107	Loher	Sex composition of catch	
642.00	Assessment of Mercury and other contaminants	Medium	8,400	Dykstra	Environmental effects	
650.18	Archival tags: tag attachment protocols	High	2,800	Loher	Adult distribution	
650.20	Investigation of Pacific halibut dispersal on the 4D Edge	High	5,500	Loher	Spawning areas	
661.11	Ichthyophonus Incidence Monitoring	Medium	8,055	Dykstra	Environmental effects	
669.11	At-sea Collection of Pacific Halibut Weight to Reevaluate Conversion Factors	High	1,500	Soderlund	Length-weight relationship	
670.11	Wire tagging of Pacific halibut on NMFS trawl and setline surveys	High	12,000	Forsberg	Juvenile and adult distribution	
	Total - New Projects		297,518			
	Total - Continuing Projects		202,482			
	Overall Total (all projects)		500,000			

Research projects for 2017

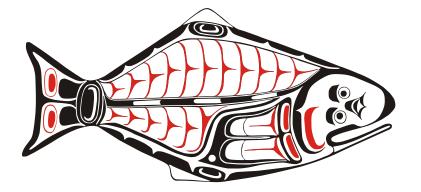

Research proposals submitted for external funding

	Project #	Grant agency	Project name	Partners	IPHC Budget (US\$)	PI	Management implications	Submission status
	1	Saltonstall- Kennedy NOAA	Improving discard mortality rate estimates in the Pacific halibut by integrating handling practices, physiological condition and post-release survival	Alaska Pacific University	223,220	Planas (lead PI) Dykstra Loher Stewart Hicks	Bycatch estimates	Submitted in December 2016
	2	NPRB	Somatic growth processes in the Pacific halibut (Hippoglossus stenolepis) and their response to temperature, density and stress manipulation effects	AFSC- NOAA- Newport	122,264	Planas (lead Pl)	Changes in biomass/size- at-age	Submitted in December 2016
	3	NPRB	Larval transport, supply, and connectivity of Pacific halibut between the Gulf of Alaska and the Bering Sea	AFSC- NOAA- Seattle UAF	8,000	Sadorus Planas Stewart	Biomass distribution	Submitted in December 2016
NOAA FISHERIES	4	Essential Fish Habitat NOAA	Validating biochemical markers of growth for habitat assessment in flatfishes	AFSC- NOAA- Newport	35,000	Planas	Changes in biomass/ recruitment	Submitted in November 2016
			Total red	quested (\$)	388,884			

2017 IPHC Annual Meeting

New special research projects with outside agencies for 2017

Project #	Outside agency	Project name	Regulatory area	Status	Management implications
1	NOAA	Testing the efficacy of stereoscopic electronic monitoring for species identification, enumeration and length measurement	2B, 2C, 3A, 3B	New	Integrating EM into observer program
2	PBS-DFO	Opportunistic shark sampling	2B	New	Understanding shark biology and distribution
3	WDWF	Yelloweye rockfish tagging on rockfish index stations	2A	New	Distribution
4	NOAA	Longnose skate age and maturity	2A, 2B, 2C, 3A, 3B, 4A	New	Age, growth and maturity
5	PBS-DFO	Rockfish sampling in area 2B	2B	Continuing	Age, size and maturity
6	WDFW	Rockfish sampling in area 2A	2A	Continuing	Species composition, relative abundance
7	ADFG	Yelloweye rockfish enumeration in Alaska	2C, 3A	Continuing	Distribution and assessment
8	ADEC	Environmental contaminant sampling	2C, 3A, 3B	Continuing	Environmental monitoring
9	NOAA	Pacific cod length frequency sampling	4A, 4B and 4D	Continuing	Stock assessment
10	NMFS- Auke Bay	Spiny dogfish sampling	2, 3 and 4	Continuing	Length, sex and distribution
11	Seattle Aquarium	Sixgill shark genetics	All areas	Continuing	Population genetics and distribution
		2017 IPHC Annual Meeting			Slide 25



2017 IPHC Annual Meeting

Slide 26

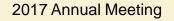
EXTRA SLIDES

2017 IPHC Annual Meeting

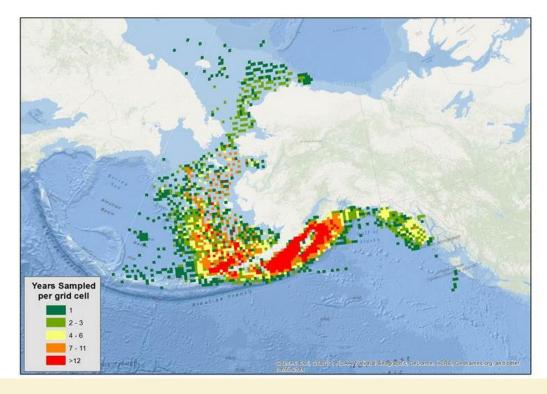
Slide 27

Pacific halibut connectivity research

- Cooperative project with NOAA/FOCI
- Grant submitted to NPRB in December 2016
- First step: synthesize data from 1972-2015 NOAA larval collection cruises (underway)
- Next step: model the synthesized data (dependent on grant)
- Focusing on the western Gulf of Alaska and Bering Sea

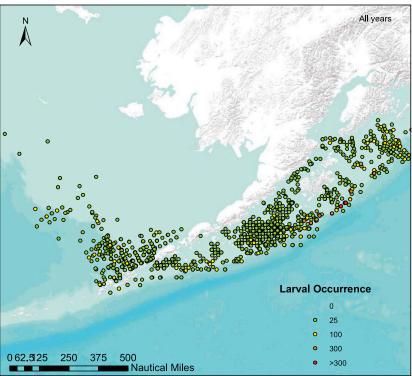

Justification

- Provide additional inputs to the MSE process i.e. spatial ranges and ecosystem use for early life stages.
- Provide insight into the potential effects of how management choices in each basin may affect the other.
- Help to complete the loop of Pacific halibut life history.

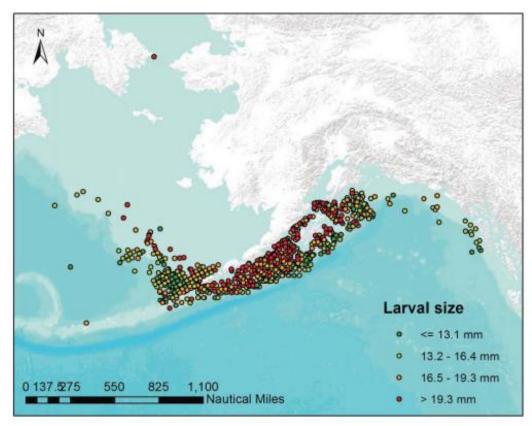


The Project

- <u>Hypothesis</u>: Eastern Bering Sea is a repository for both Bering Sea and Gulf of Alaska eggs and larvae.
- Until recently, could only speculate (which has taken place often in IPHC reports).
- Transport models have now become adequately sophisticated to achieve.
- Will be looking at connectivity between basins, as well as differences over time and environmental conditions.
- Future work may include genetic component


NOAA larval sampling stations over all years

2017 Annual Meeting


Halibut larval occurrence for all years

2017 Annual Interim Meeting

Larval occurrence by stage

2017 Annual Interim Meeting