INTERNATIONAL PACIFIC

Report on current and future Biological and Ecosystem Science Research activities

Agenda item: 4.1.1

IPHC-2025-SRB027-06

(J. Planas, C. Dykstra, A. Jasonowicz, C. Jones)

Development of an epigenetic clock for aging Pacific halibut

Objective: Develop a non-lethal genetic method for aging Pacific halibut using fin clips

• **Epigenetic clocks** are molecular ageing clocks: machine learning algorithms trained on epigenomic data from samples reflecting a wide range of ages.

• **Epigenetic clocks** use genome-wide DNA methylation features at cytosine-guanine (CpG) dinucleotide pairs in GC-rich regions of the genome (i.e. proportion of DNA molecules methylated at each CpG site for each

individual) as input.

ID	Age	CpG ₁	CpG ₂	 CpG _{850,000}
1	73	0.71	0.31	0.91
2	54	0.65	0.33	0.85
3	36	0.52	0.28	0.84
10,000	64	0.68	0.30	0.95

CpG₁ CpG₂ CpG₃ CpG₄ CpG₅ CpG₆ CpG₇ CpG₈ CpG₉ CpG₁₀... CpG_{850.00}

• Age predicting models (e.g. elastic net penalized regression models) rely on the weighed average of methylation across a subset of CpGs.

Test dataset is used to validate and test the performance (e.g. Pearson correlation or median absolute error) of the epigenetic clock.

Development of an epigenetic clock for aging Pacific halibut

• Epigenetic clocks have been developed for a handful of fish species.

Species	Tissue	MAE	Correlation	# CpGs	Reference	
Human	Multiple	3.6 years	0.96	353	Horvath, 2013	
European Sea Bass	Muscle	2.15 years	0.82	48	Anastasiadi and Piferrer, 2020	
Zebrafish	Fin	3.18 weeks	0.97	29	Mayne et al., 2020	
Lungfish	Fin	0.86 years	0.98	31	Mayne et al., 2021	
Murray cod, Mary	Fin	0.34 years	0.92	26	Mayne et al., 2021	
River cod						
Red snapper	Muscle	-	0.99	199	Weber et al., 2022	
Red grouper	Fin	-	0.99	49	Weber et al., 2022	
Golden perch	Fin	74.5 days	0.96	49	Mayne et al., 2023	
Blackvelly rosefish	rosefish Muscle, fin 1.62 years 0.98 316 Weber et al., 2024		Weber et al., 2024			
Atlantic halibut	Fin	-	-	-	Ruzzante et al., in progress	

• Recent estimates indicate a minimum of 220 aged tissue samples to minimize error rates (Mayne et al., 2021)

Development of an epigenetic clock for aging Pacific halibut

Epigenetic clock

Chronological age

Age-correlated

CpG sites

5♂ and 5♀/age from 6 to 30 years of age N = 250 samples

Step 1: Reduced Representation Bisulfite Sequencing

Predictive model

Step 2:

- DNA extracted from all 250 samples.
- Individual libraries constructed from 168 samples.
- First pair of pooled libraries submitted for sequencing.
- Bioinformatic pipeline for analysis established.

Fish et al. (2022) Frontiers in Mar. Sci. 9: 801759

Simchick et al. (2024) Gen. Comp. Endocrinol. 347: 114425

Reduce uncertainty in stock size and fishing intensity

Male Reproductive Characterization

- Sample collection
 - Sept 2017 Aug 2018, Portlock Region (Central Gulf of Alaska)
 - 30 males / month
 - ≥ 70 cm fork length
- Highest gonadosomatic index (GSI) values coincided with peak spawning for females (Dec – Jan)
- Sperm production detected November April

Male Reproductive Characterization

- Histology
 - Six stages of testicular development

Stages	Description	Cellular characteristics				
Stage 1	Early Spermatogenesis	Only spermatogonia (SG)				
Stage 2	Mid Spermatogenesis	SG and spermatocytes (SC)				
Stage 3	Mid-Late Spermatogenesis	SC and spermatids (ST)				
Stage 4	Late Spermatogenesis	SC, ST and spermatozoa (SZ)				
Stage 5	Spermiation	Testes full of mature SZ				
Stage 6	Post-Spawning/Spent	Partially empty testes with residual SZ and SG clumps				

Male Reproductive Characterization

- Histology
 Six defined stages of testicular development
- Annual reproductive cycle
 Spermatogenesis rapidly progressing from
 March to November, when spermiation begins
- Biological indicators by stage
 GSI, HSI, Fulton's K, Age, Fat %
- Next Steps
 Immature vs Mature classification

3. Growth

Research outcomes: • Effects of temperature on growth rates

• Temperature-specific molecular responses

External collaborators: Behavioral Ecology Program at AFSC-NOAA (Newport, OR), Alaska Pacific University, UW

External funding: NPRB Grant#1704 (Sept. 2017-Feb. 2020)

Publications: Planas et al. Manuscript accepted in J. Exp. Biol.

4. Mortality and Survival Assessment

External funding: Saltonstall-Kennedy NOAA (2017-2020); NFWF (2019-2021); NPRB#2009 (2021-2022)

Publications: Kroska et al. (2021) Conservation Physiology 9: coab001

Loher et al. (2022) North American Journal of Fisheries Management 42: 37-49

Dykstra et al. (2024) Ocean & Coastal Management. 249: 107018.

Longline fishery

Dykstra et al. In Preparation Recreational fishery

Manuscript in preparation

External funding: Bycatch Reduction Engineering Program NOAA NA21NMF4720534 (2021-2023), NA23NMF4720414 (2023-2025)

Publications: Lomeli et al. (2021) Fisheries Research 233: 105737

Lomeli et al. (2023) Ocean & Coastal Management 241: 106664

Reducing whale depredation by protecting longline catches

Second phase: Testing shuttle in the presence of depredators

- <u>Objective</u>: Further refine and characterize performance of the shuttle device in the presence of toothed whales in IPHC Regulatory Area 4A.
- Field study took place from 21-28 May 2025 from Dutch Harbor, AK on the F/V Oracle.
- 18 sets: 15 sets with shuttle and control catch paired comparisons (6 sets in the presence of orcas).
- Collected \sim 80 hours of underwater footage (\sim 70 hr reviewed to date: 10/15 paired sets).

Reducing whale depredation by protecting longline catches

Four Camera Systems

- 1. Long Line Cam (Control)
- 2. Shuttle External Cam
- 3. Shuttle Internal Forward Facing (towards entrance)
- 4. Rear Facing (towards keyhole)

Reducing whale depredation by protecting longline catches

External Shuttle Camera

Exclusions

Reducing whale depredation by protecting longline catches

Pass Throughs

Internal Rear Facing Camera

Reducing whale depredation by protecting longline catches

Entrainments

Internal Forward-Facing Camera

Reducing whale depredation by protecting longline catches

Escapes

Reducing whale depredation by protecting longline catches

Preliminary Results: Retention Trends from Camera

Common Name	Encountered	Excluded	Entered	Escaped	Passed Through	Entrained
Pacific halibut	89	1 (1.1%)	88	0	8 (9.1%)	80 (90.9%)
Sablefish	160	2 (1.3%)	158	45 (28.5%)	30 (19.0%)	83 (52.5%)
Pacific cod	124	3 (2.4%)	121	13 (10.7%)	6 (5.0%)	102 (84.3%)
Rockfish	16	7 (43.8%)	9	2 (22.2%)	1 (11.1%)	6 (66.7%)
Skate	18	3 (16.7%)	15	0	2 (13.3%)	13 (86.7%)

- 4,863 hook status observations recorded across all four cameras.
- Species morphology is primarily responsible for retention outcomes when encountering the shuttle.
- Retention rates can be improved with simple modifications.
- Captured rare footage of killer whales swimming around the groundline.

Reducing whale depredation by protecting longline catches

Preliminary Results: Treatment Catch Rates (Surface)

- Shuttle are capable of good retention.
 - Results variable between control and shuttle
 - Uncontrollable factors confound results (crab pot snarls, species composition).

Reducing whale depredation by protecting longline catches

Killer whales captured swimming around the groundline

Conclusions

- Shuttle can be safely deployed and retrieved by vessels with a picking boom.
- Shuttle has good retention of Pacific halibut.
- Simple modifications should increase retention of smaller species (i.e. Pacific cod and Sablefish).
- Next steps to help foster this new tool to reduce impacts of whale depredation should be investigated and may include:
 - Regulation changes requiring full retention of all sizes of Pacific halibut.
 - Weaker gangions, softer hooks, or modified hooks considered to reduce hook removal damage.
 - Consider a collapsible design for safer stowage and transport.

Summary of awarded research grants to IPHC

Project #	Grant agency	Project name	PI	Partners	IPHC Budget (\$US)	Management implications	Grant period
1	Bycatch Reduction Engineering Program-NOAA	Full scale testing of devices to minimize whale depredation in longline fisheries (NOAA Award Number NA23NMF4720414)	IPHC	Alaska Fisheries Science Center-NOAA	\$199,870	Mortality estimations due to whale depredation	November 2023 – April 2026
2	Alaska Sea Grant	Development of a non-lethal genetic- based method for aging Pacific halibut (R/2024-05)	IPHC, Alaska Pacific U. (APU)	Alaska Fisheries Science Center-NOAA (Juneau)	\$60,374	Stock structure	January 2025- December 2026
				Total awarded (\$)	\$260,244		

INTERNATIONAL PACIFIC

HALIBUT COMMISSION

https://www.iphc.int/