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Using artificial intelligence (AI) for supplementing Pacific halibut age determination 
from collected otoliths 
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PURPOSE 
This document summarizes the information available on the use of artificial intelligence (AI) for 
determining the age of fish from images of collected otoliths and provides an update on the 
exploratory work of implementing an AI-based age determination model for Pacific halibut. 
The progress summarized in this document includes: 

- Testing various deep learning architectures to identify the optimal approach given the 
available otolith images. 

- Evaluating model generalization by comparing age predictions from a model trained on 
images from one year to those from a different year. 

- Assessing differences in model performance between images of processed (sectioned 
and baked) and unprocessed (surface) otoliths. 

- Utilizing confidence intervals derived from deep ensemble techniques to assess the 
model’s capability in identifying ambiguous or noisy samples. 

- Evaluating the model’s performance in predicting the geographic region of sample 
collection. 

The purpose of this document is twofold. First, it provides essential background information to 
support ongoing efforts in establishing a comprehensive database of otolith images with expert-
provided labels for future ageing use. Second, it provides an update on the viability of an AI-
based modeling approach for supplementing current Pacific halibut ageing protocol, while also 
outlining the remaining steps and requirements necessary for operational implementation. 
BACKGROUND 
Otoliths are crystalline calcium carbonate structures, mostly in the form of aragonite, found in 
the inner ear of fish. They contain growth rings, that are often compared to tree growth rings. By 
analyzing the growth patterns in otoliths, scientists estimate the age of fish (Campana, 1999; 
Campana & Neilson, 1985), supporting the estimation of fish population demographics and 
population dynamics (Campana & Thorrold, 2001). In turn, fish age is a key input to stock 
assessment models that inform management decisions related to fish exploitation (Methot & 
Wetzel, 2013). It is estimated that the number of otoliths from captured fish that are read annually 
worldwide is on the order of one million (Campana & Thorrold, 2001). 
The current method for determining ages of most fish species relies on manually extracting, 
preparing (embedding, sectioning), and reading otoliths. The simplest approach to reading the 
otolith is to immerse it in a clear liquid, such as water or alcohol solution, illuminate it from above, 
and view it against a dark background, using a stereo microscope. This method is suitable only 
for otoliths that are relatively thin with all annual bands visible from the surface. For species such 
as Pacific halibut, as the growth rate of the fish slows down, the outer growth bands become 
increasingly compressed and difficult to read from the surface of the whole otolith. To correctly 
determine the number of annual bands in such cases, otoliths are typically viewed in cross 
section which allows viewing the bands that are not visible from the surface view. In addition, 
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the contrast between the growth rings can be enhanced through the baking process. Pacific 
halibut otoliths are aged using the ‘break and bake’ technique. 
This manual ageing process is expensive, time-consuming,1 and can be subject to bias2 as well 
as imprecision due to variations in age estimations between readers and within readers over 
time. Recent advances in imaging technologies and machine learning suggest that AI can assist 
in this process by automating the analysis of otolith images3 and identifying and measuring the 
growth rings to determine age. AI algorithms can be trained on a large dataset of otolith images 
with known ages to learn the patterns and variations in growth rings. Once trained, the AI model 
can analyze new otolith images and predict the age of the fish based on the identified patterns 
in the image. 
Using AI for age determination of Pacific halibut could improve consistency and replicability of 
age estimates, as well as provide time and cost savings to the organization, providing age data 
for reliable management advice. However, it's important to note that the AI model's accuracy 
depends on the quality and diversity of the training data, as well as the expertise of the scientists 
involved in training and validating the model. Regular validation and calibration with manual age 
determinations may be necessary to ensure the accuracy and reliability of the AI predictions. 
Thus, the proposed approach explores integrating AI-based age determination and traditional 
ageing methods for maximum accuracy of the estimates. 
MODEL 
Model framework 
The proposed model framework (Figure 1) includes a continuous process of training the model 
using available labelled data (aged otoliths), querying the model to select the next sample, 
labeling or relabeling the selected sample, and enriching the model with newly labelled samples. 
This model relies on automatized ageing that is supplementing the expert-derived age estimates 
continuously improving the model in the Label phase and the Enrich phase. 

 
1 While the actual reading may account only for a fraction of the total cost and time required to process the otolith 
from collection to age determination, skilled readers require years of training, which should be considered when 
conducting a cost-benefit analysis. 
2 While the count of annual rings on Pacific halibut otoliths was found to provide unbiased age estimate using 
validation against bomb radiocarbon isotopes (Piner & Wischniowski, 2004), an earlier oxytetracycline (OTC) mark-
recapture study indicated biases among age readers (Blood, 2003). In the 1980s, the IPHC applied injections with 
the antibiotic oxytetracycline (OTC) during routine tagging operations to evaluate validity of ageing method (IPHC, 
1985). Upon injection, the OTC is absorbed by the fish's bony structure, including the otoliths, and leaves a mark 
that is easily seen when viewed under an ultraviolet light. When an OTC-injected tagged fish is recovered, the 
otoliths are removed and examined under the ultraviolet light. By comparing the number of annuli laid since the 
OTC mark to the fish recovery, the accuracy of the age readings can be determined. 
3 Although the idea of taking pictures of Pacific halibut otoliths is not new. See 1960 report by G. Morris Southward, 
Photographing Halibut Otoliths for Measuring Growth Zones (Southward, 1962). 
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Figure 1. Model framework. 

Modeling approach 
Previous literature (see perspective piece by Malde et al., 2020) suggests adapting a pre-trained 
convolutional neural network (CNN) designed for image classification to estimate age using 
otolith images obtained via microscope camera. This type of model is trained on a large 
collection of images of otoliths previously aged by human readers. Moen et al. (2018) presents 
the first case of the use of deep learning and CNN to estimate age from images of whole otoliths 
of Greenland halibut (Reinhardtius hippoglossoides).4 
Artificial neural networks (ANNs) are computational structures inspired by biological neural 
networks. They consist of simple computational units referred to as neurons, organized in layers. 
The neuron parameters (or weights) are estimated by training the model using supervised 
learning. This process consists of two steps: forward propagation, where the network makes a 
prediction based on the input; and back propagation, where the network learns from its mistake 
by calculating the gradient of a loss function, and then uses the gradient to update the neuron 
weights. The ANNs approach has been used for fish ageing by Robertson & Morison (1999) and 
Fablet & Le Josse (2005) with a limited success. 
The neural networks approach significantly improved in recent years with the increase in the 
number of layers, applying an approach often referred to as deep learning. Deep learning neural 
networks are known for their generality. With sufficient training data, they can be used to classify 
raw data (e.g., an array of pixels) directly, without explicit design of low-level features. The deep 
learning algorithm lower layers learn to distinguish between primitive features automatically, 
typically identifying sharp edges or color transitions. Subsequent layers then learn to recognize 
more abstract features as combinations of lower layer features, and finally merge this information 
to provide a high-level classification. 
In CNNs (LeCun et al., 1998; Simonyan & Zisserman, 2015), the layers are structured as stacks 
of filters, each recognizing increasingly abstract features in the data. Convolutional layers may 
be understood as an efficient way to transform an input image into another image, highlighting 
meaningful patterns, learned from data during training. The training is sequential, meaning the 
output of each layer is the input of the next layer, and the useful features are learned in the 

 
4 CNN was also applied for other tasks related to fisheries management, e.g. fish species identification (Allken et 
al., 2019). 
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various layers during training. This approach is very effective for many image analysis problems, 
where objects are often recognized independent of their location. During network training, the 
performance is monitored over sequential epochs. Epochs represent the number of times that 
the training dataset is passed forward and backward through the network to refine model 
weights. Whenever the validation loss decreases, the trained model is saved, ending up with the 
network that corresponds to the minimum loss and highest accuracy on the validation set. The 
trained network is then evaluated on the testing set. 
In the CNN model, age prediction from otolith images can be formulated either as a classification 
task - where age is treated as a categorical variable - or as an image regression task, which 
involves predicting a continuous numerical value. Although treating fish age as a discrete 
parameter is a common method for identifying individual year classes, i.e., grouping fish by 
spawning year (Moen et al., 2018), this approach has proven less effective for Pacific halibut. 
As a long-lived species with a wide distribution of age classes, Pacific halibut pose a challenge 
for classification-based methods. The oldest Pacific halibut on record have been aged at 55 
years (Keith et al., 2014). 
Software and architectural options 
The proposed approach builds on prior work by Moen et al., (2018) and Moore et al., (2019), 
who implemented CNNs for otolith-based fish age estimation using the TensorFlow and Keras 
libraries. TensorFlow remains one of the most widely used and well-supported frameworks for 
deep learning, and Keras provides a high-level API that simplifies TensorFlow model 
development. 
The approach utilizes a transfer-learning technique to develop a CNN for otolith age estimation. 
Transfer learning is the process of repurposing a machine learning model that has been pre-
trained for another, related, task. Specifically, it starts with the InceptionV3 model from Google, 
pre-trained on the ImageNet database. ImageNet database contains over 14 million annotated 
images classified into 1,000 categories. By loading CNN layers with publicly available pre-trained 
weights rather than random initialization, transfer learning significantly enhances model 
performance. 
To adapt this model specifically for Pacific halibut ageing, modifications included scaling the 
input layer to match otolith images’ resolution5 and changing the output from multi-dimensional 
class probabilities to a single numeric output for regression.6 Thus, the architecture employed 
follows the pattern: Input → InceptionV3 (feature extractor) → Regressor → Output, optimized 

 
5 Resolution is the total number of pixels along an image's width and height, expressed as pixels per inch (PPI). 
The Inception v3 model processes images that are 299 x 299 pixels in size. The original images (2548 × 2548 
pixels) were first resized to 400 × 400 pixels prior to input into the model. This intermediate resizing step preserves 
more visual detail than a direct downscaling to 299 × 299 and allows for subsequent data augmentation operations 
(such as cropping, flipping, or rotation) to be applied more effectively before the final resize to the model’s required 
input size. 
6 Alternatively, Politikos et al. (2021) replaced the last layer with a feed-forward network with two hidden layers 
replacing the default 1000-categories output layer with a fully-connected layer with six hidden nodes, corresponding 
to a limited number of age categories [Age-0 – Age-5+], with the last one representing fish of age 5 and older, In 
this case, the network outputs probabilities using the softmax function, a function that performs multi-class 
classification and transforms the outputs to represent the probability distributions over a list of potential outcomes. 
The IPHC uses in its stock assessment bins Age-2 – Age 25+ for the current age data and Age-2 - Age-20+ for the 
historical surface read ages. The adoption of a larger number of age categories prompted the decision to incorporate 
a regression layer in place of class probabilities. 

https://cloud.google.com/tpu/docs/inception-v3-advanced
http://www.image-net.org/
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using stochastic gradient descent (SGD) to minimize mean squared error (MSE) between model 
predictions and expert annotations.7 
A similar approach, although adopting classification approach, was applied for ageing Greek 
Red Mullet (Mullus barbatus) (Politikos et al., 2022) and the associated code is available on 
GitHub (github.com/dimpolitik/DeepOtolith). The available open-source code was adapted to 
test the approach for Pacific halibut. 
In addition to the InceptionV3 architecture, alternative architectures were explored to identify 
potentially superior performance or efficiency advantages. These included EfficientNet variants 
(EfficientNetB4, EfficientNetB5, EfficientNetV2 S/M/L) and ConvNeXt. EfficientNet architectures 
are known for their balanced approach to scaling depth, width, and resolution, optimizing 
computational efficiency and accuracy. EfficientNetV2 further refines this by introducing 
progressive training and improved scaling techniques. ConvNeXt architectures, inspired by 
transformer models, incorporate modifications to convolutional structures, achieving competitive 
accuracy with a simplified design and potentially improved model interpretability. 
While TensorFlow/Keras has been the primary framework used in the current implementation, 
future work may explore alternative frameworks such as PyTorch (originally developed by Meta), 
which offers flexible dynamic computation graphs and growing adoption in the deep learning 
research community. 
Performance metrics and achieved accuracy 
Performance of the CNN to correctly assign ages (rounded output of the regression layer) to 
otolith images in the test set is assessed via the root mean squared error (RMSE) and the 
percentage of correctly predicted ages, as well as predictions within ±1 year tolerance. Moen et 
al., (2018) also suggest calculating coefficient of variation (CV).8 
Moen et al., (2018), for Greenland halibut, achieved MSE for the left and right otoliths and pair 
of 3.27, 2.71 and 2.99, respectively. Age was correctly estimated for 48 out of the 164 tested 
otolith-pairs (29%). In addition, 63 cases (38%) were estimated to be one year off the read age. 
There was also a clear tendency for the system to predict a lower age for older individuals, when 
compared to human readers. The variance of the predictions also increased with the age of the 
otolith. 
The model developed by Moore et al. (2019), for prediction of age of snapper using CT scans,9 
gave the same age as the human reader for 47% of otoliths in a test dataset, with a further 35% 
of ages estimated within 1 year of the human reader estimate of age (n=687). For hoki, the 
model gave the same age as the human reader for 41% of individuals (n=882). 
The age model for Greenland halibut by Politikos et al., (2022) gave RMSE of 1.69 years 
between age prediction and age reading by experts (n=8,218, 26 age categories). For Greek 

 
7 In practice, the neural network minimizes the MSE of normalized age values, i.e., age values divided by the 
maximum age provided as input. 
8 The CV of the predicted age at true age is the primary input to the IPHC stock assessment. It is generally modelled 
as a parametric function of age accounting for the complex joint probability that both estimates can be incorrect 
(Punt et al., 2008). 
9 CT scanning uses X-ray technology to produce image slices through objects, which can be reconstructed into 
virtual, three-dimensional (3D) images that can be rotated and viewed in any orientation (Moore et al., 2019). Such 
images may provide more accurate estimates, but the cost of this approach is prohibitive at (based on trial 
conducted in New Zealand) $1,500 per day, with scan timed for an individual otolith between 40 min to one hour. 
However, as the technology progresses, this approach may provide an option for fully automating the entire ageing 
process by scanning a whole fish (e.g., along a conveyor belt). Deep learning methods (i.e., CNN) developed for 
age determination from surface images could serve as a base for age determination from CT scans. 

https://github.com/dimpolitik/DeepOtolith
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red mullet, correct age was predicted for 69.2% individuals, with an additional 28.2% being within 
1 year of error (n=5,027). 
Benson et al., (2023), using near-infrared spectroscopy of otoliths, supplemented by geospatial 
and biological data routinely collected on the survey, estimated age of walleye pollock. For the 
optimal multimodal CNN model, an RMSE of 0.83 for the training set and an RMSE of 0.91 for 
the test set indicated that at least 67% of estimated ages were predicted within ±1 year of age 
compared to traditional microscope-based ages. 
However, it should be noted that neither the traditional ageing methods for Pacific halibut are 
perfectly accurate. Within- and between-reader agreement in age assignment is generally 60%-
70% complete agreement, 80% to 90% within one year, and 100% within 3 years. The IPHC 
Secretariat’s publications report on % agreement (see Technical Report No. 46 and No. 47). 
Use of auxiliary data 
The accuracy and precision of age predictions from otolith images using neural networks could 
potentially be enhanced by incorporating auxiliary data into the modeling process (Moen et al., 
2018). For example, the geographic location where fish are captured could offer valuable 
supplementary information to the model. Past IPHC work suggests a good deal of spatial 
variation in Pacific halibut growth ring patterns. This points to the importance of good spatial 
coverage in the training sample.  
The project plans to explore the integration of spatial covariates, such as latitude, longitude, or 
defined regulatory areas, to refine age predictions. Inclusion of these spatial factors could help 
the neural networks better interpret and account for region-specific growth patterns that influence 
otolith formation. Other available auxiliary data include collection year, which could be applied 
to account for variation between cohorts and prevalent environmental conditions throughout the 
aged fish life histories, and the collection dates, which provide insights into seasonal variation to 
the interpretation of the otolith edge. 
Database 
The IPHC annually ages a considerable number of otoliths (see Appendix A for details). Since 
1925, over 1.5 million otoliths have been aged and stored for potential future use. Otoliths 
collected by the IPHC for ageing purposes undergo additional processing. Otoliths are sectioned 
(broken in half) and baked to enhance the contrast between the growth rings. These stored and 
previously aged otoliths serve as a valuable resource for creating a database of images for 
training purposes. To optimize model training, the selection of otoliths included in the model 
covers a broad spectrum of fish sizes, ages, sexes, and collection locations. 
Before photographing, processed otoliths were placed in a monochrome tray featuring an 
elongated groove designed to keep the otolith upright and immersed in water. The pictures were 
taken with AmScope 8.5MP eyepiece cameras,10 under consistent lighting conditions and 
magnification. The input database includes images of standardized size, 2,548 by 2,548 pixels, 
which are later resized to the desired resolution based on the model’s specification.11 

 
10 The camera fits in one of the microscope eyepieces, eliminating the need to purchase a separate camera mount 
for the microscope. 
11 Moen et al. (2018) used images 400 by 400 pixels, which required the input layer to be scaled to match the 
Inception V3 requirements (299 by 299 pixels). Ordoñez et al. (2020), using the same set of images, built a CNN 
with images resized to 224 by 224 pixels, the default input of the VGG-19 model. Higher resolution images offer the 
flexibility to adapt the model in the future to more detailed and complex image analysis tasks, potentially improving 
the accuracy and effectiveness of image recognition capabilities. 

https://www.iphc.int/uploads/pdf/tr/IPHC-2001-TR046.pdf
https://www.iphc.int/uploads/pdf/tr/IPHC-2003-TR047.pdf
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It is important to note that it may not be necessary to image the otoliths at resolutions sufficient 
for human viewers to resolve, because the CNN may be able to arrive at an age estimate without 
directly counting bands (Moore et al., 2019). 
Figure 2 shows an example of a range of images used in the CNN training dataset. 

    
Figure 2. Examples of Pacific halibut otolith images taken for inclusion in the training set. 

In addition, the IPHC is in the process of creating complimentary database comprising labelled 
images of otoliths captured prior to processing to conduct a cost-benefit analysis of using 
processed versus unprocessed otoliths for AI-based age determination. Example images are 
provided in Figure 3. In their research, Politikos et al. (2022) utilized digital images of otoliths 
that were not subject to any additional processing in the laboratory, immersed in water and 
placed under a stereomicroscope on a white background with transmitted light. However, it is 
important to note that even if results indicate that breaking and baking is not necessary for age 
determination using AI, a subsample chosen for the Label and Enrich phases would have to be 
fully processed for age determination with traditional methods by an expert reader. 

    
Figure 3. Examples of Pacific halibut otolith images taken for inclusion in the training set. 

Presorting otoliths 
The adopted procedure excludes broken otoliths, applying manual presorting at the image-taking 
stage. Presorting has also occurred at the collection stage when crystalized otoliths12 are omitted 
when collecting samples. 
Ongoing research [Dimitris Politikos, personal communication] is investigating the initial stage 
of the aging process, specifically assessing whether an otolith is of sufficient quality for age 
determination. This research is relevant for cases involving crystallized or broken otoliths and 
aims to potentially eliminate the need for subjective decisions by samplers regarding the usability 
of otoliths for age determination. This approach implements a two-stage classification system. 
In the first stage, the model assesses the otolith’s suitability for ageing; in the second, it 

 
12 Crystalized otoliths have an altered composition – specifically, where the aragonite in the otolith is partially or 
mostly replaced by vaterite, a phenomenon known as otolith crystallization. Crystallized otoliths are not suitable for 
ageing. 
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determines the age. Th algorithm-driven presorting could also incorporate expert knowledge for 
handling problematic otoliths. 
In developing the model, the training dataset can be strategically supplemented with images of 
samples that represent a group of otoliths with which the original model struggles the most 
(Query phase).13 
Image collection 
The image collection is associated with labels storing: 

1. Otolith reference number – using referencing system already in place; 
2. Image name and location – exact path for image access; 
3. Resolved age – human reader derived age (rsvage); 
4. Year collected – to account for variation between cohorts and prevalent environmental 

conditions; 
5. Date collected – to account for the ‘edge effect’ reflecting seasonal changes; 
6. Geospatial characteristics of the collection site (latitude, longitude and IPHC Regulatory 

Area) – to capture regional variation; 
7. Resolved sex – to determine whether otolith characteristics (possibly not directly visible 

to human eye) could be used for sex determination.14 
Uncertainty estimates 
To further refine accuracy in a production setting, a mixed-method approach can be applied. 
This approach involves selecting a subset of otolith images - e.g., 10% or 20 % - for re-
examination by human experts, focusing specifically on cases where the AI model expresses 
low confidence in its predictions. These selections would be guided by model-derived uncertainty 
estimates. The newly relabeled samples can then be incorporated into the training set for annual 
fine-tuning, contributing to ongoing model improvement in a resource-efficient and targeted 
manner. 
In practice, this strategy would allow human experts to focus on “difficult” otoliths—those with 
high uncertainty—while automating the processing of “easy” ones with high model confidence. 
This hybrid workflow enhances throughput without compromising the accuracy and consistency 
necessary for applications such as stock assessment, where minimizing systematic bias is 
critical.15 
Two approaches were considered for quantifying model uncertainty: 

• Monte Carlo dropout (Gal & Ghahramani, 2016): This technique involves performing 
multiple forward passes through the model with dropout layers activated during inference. 
The resulting variability in predictions across passes is used to estimate confidence 
intervals. Monte Carlo Dropout is computationally efficient and easy to implement, and it 
provides a useful proxy for identifying ambiguous or noisy samples. This form of per-
sample uncertainty is also referred to as training dynamics or soft loss tracing. 

 
13 About 1% of otoliths are partly crystallized and are assigned ages. The same is true for broken otoliths that are 
aged (1%) 
14 IPHC is currently using genotyping for Pacific halibut sex determination. 
15 If there is a strong junction in the relative precision between old and younger fish due to the change in methods 
this may require a nonparametric approach to ageing imprecision. If an AI method is biased as a function of age 
(standard for surface reading methods) and the break and bake method is unbiased, integrating the methods may 
prove challenging. 
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• Deep ensembles (Lakshminarayanan et al., 2017): This approach involves training 
multiple independently initialized models and aggregating their predictions to form a 
consensus output. The variance across ensemble members serves as an estimate of 
prediction uncertainty. Deep ensembles are generally more robust than Monte Carlo 
Dropout, especially in identifying out-of-distribution samples and capturing both model 
and data uncertainty. Their main advantage lies in their improved predictive performance 
and better-calibrated confidence intervals, though at the cost of increased computational 
resources. 

Together, these tools support the design of a semi-automated, quality-controlled ageing protocol 
that leverages the strengths of both AI and human expertise. 
PRELIMINARY RESULTS 
Comparison of model architectures 
Several modern CNN architectures were systematically evaluated to determine the most suitable 
approach for ageing Pacific halibut using otolith images. The architectures tested included: 

• InceptionV3: A widely used CNN known for its balanced computational efficiency and 
accuracy. 

• EfficientNet (B4, B5, V2 S/M/L): Architectures optimized for scaling model depth, width, 
and resolution uniformly, enhancing computational efficiency and predictive accuracy. 

• ConvNeXt: Inspired by transformer-based models, ConvNeXt utilizes modified 
convolutional operations aiming to simplify model complexity while maintaining 
competitive performance. 

Each architecture was adapted via transfer learning, leveraging publicly available pre-trained 
weights from the ImageNet database, and subsequently fine-tuned specifically for the task of 
Pacific halibut age prediction. Adaptations involved resizing input images to match each 
architecture’s requirements and adjusting the output layer to perform regression predicting age 
as a continuous numeric value. 
The models were evaluated using standardized procedures to ensure valid and robust 
comparisons. The main evaluation criteria included: 

• RMSE, percentage of exact age matches, and percentage within ±1 year tolerance 
between predicted ages and expert-provided ages for a test set of images collected within 
the same year as those used for training (without image overlap). 

• RMSE, percentage of exact age matches, and percentage within ±1 year tolerance for a 
second test set comprising images collected five years after the training images, providing 
an assessment of temporal generalization. 

The evaluation involved multiple experimental runs to ensure robustness. Selection of model run 
configurations and evaluation results are provided in Appendix 2. 
The comparative evaluation revealed significant performance differences among tested CNN 
architectures. Despite their advanced theoretical advantages - such as better scalability, 
computational efficiency, and deeper learning capabilities - EfficientNet and ConvNeXt models 
underperformed relative to the simpler InceptionV3 architecture. Several configurations of 
EfficientNet and ConvNeXt exhibited limited learning, with predictions regressing toward the 
mean age of the test dataset. This outcome suggests that these more complex models struggled 
to extract meaningful age-related features from the otolith images, likely due to a combination of 
insufficient training data and overfitting driven by model complexity. 
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In contrast, the InceptionV3 architecture consistently derived more accurate and reliable 
predictions, suggesting that its simpler structure is more suitable given the current limitations in 
dataset size and variability. However, the selected final InceptionV3 configuration presented in 
this update demonstrates substantial improvements compared to previously evaluated models 
(IPHC-2024-SRB025-10). Driven by the goal of improved temporal generalization, the new 
model applies more aggressive image augmentation strategies,16 an adaptive learning rate and 
better tuned training parameters. These methodological enhancements contribute to improved 
model performance and predictive reliability. 
Selected model evaluation 
The selected model configuration utilized 2,799 images of otoliths collected during the 2019 
IPHC fishery-independent setline survey (FISS). The 2019 FISS represents a comprehensive 
sampling effort expected to reflect regional variability in Pacific halibut otolith characteristics. As 
such, it provides a robust foundation for initial model development and evaluation. 
The images were divided into training, validation, and test datasets. The training set (1,665) was 
used for training purposes. The validation set (294) was used to evaluate the model during the 
training process, allowing for adjustments without using the test set, which was reserved for the 
final evaluation. The test dataset (30%, 840) was used to assess the performance of the model 
after training, providing an unbiased evaluation of its generalization capability to new, unseen 
data. Additionally, a separate set of 2,704 images of otoliths collected during the 2024 FISS was 
used to verify model performance on additional unseen data, testing the temporal generalization 
of the model configurations. All images were resized to 400x400 pixels. Images of broken otoliths 
were excluded. 
The selected model employed a maximum of 600 training epochs, with early stopping patience 
set to 80 epochs. A learning rate reduction was triggered if validation loss plateaued for 40 
epochs, reducing the rate by a factor of 0.6. The initial learning rate was set at 0.0002, and 
training was performed using a batch size of 16. A comprehensive suite of image augmentation 
techniques (e.g., rotation, zoom, flipping, brightness variation) was applied to improve 
generalization and robustness. 
To enhance model reliability and quantify uncertainty, a deep ensemble approach was adopted. 
The model was trained 15 times, each with a different random seed. Ensemble outputs were 
averaged to produce final predictions and calculate prediction uncertainty. Detailed results for 
individual ensemble members are provided in Appendix C. 
Across ensemble runs, the model trained for an average of 288 epochs (208 effective epochs 
with early stopping set at 80). It achieved a normalized MSE of 0.00016 on the validation set 
and 0.00188 on the test set. When results were rounded to the nearest integer age, the average 
RMSE for the test set was 1.80. On average, the ensemble predicted the exact age correctly for 
30.3% of test images, and an additional 41.7% were within ±1 year of the manually assigned 
age, resulting in a total agreement within 1 year for over 70% of cases. 
Figure 4 illustrates the evolution of model accuracy over training epochs for one representative 
run. Figure 5 shows a comparison between manually derived ages and AI-predicted ages across 
the ensemble. Figure 6 compares the age composition estimated manually with that derived 
from the ensemble model predictions. 

 
16 Rotation range=360, width shift range=0.1, height shift range=0.1, brightness range=[0.95, 1.05], and zoom 
range=[0.98, 1.02]. 

https://www.iphc.int/uploads/2024/08/IPHC-2024-SRB025-10-AI-project-update.pdf
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Figure 4. Age accuracy (measured as normalized age MSE) throughout the training process (example 
for seed 19). 

  

Figure 5. Comparison between manually derived age with AI predicted age. 

 
Figure 6. Comparison between manually derived age with AI predicted age – age composition. 
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It is important to note that statistically significant bias was observed mainly in age categories 
21+ (increase from 16+ reported in IPHC-2024-SRB025-10). The number of observations for 
older age categories remains low despite an overall increase in sample size (Figure 7). This 
suggests that the saturation point for achieving optimal accuracy in older age categories may 
not yet have been reached, and the model could benefit from further improvement by adding 
more images representing older age categories to the training set. Currently, only 2.6% of the 
otoliths (74 samples) used in the model were from fish aged 21 or older. 

 
Figure 7. Distribution on residuals and number of images by age in the test set. 

Testing temporal generalization 
The performance of the model trained on the 2019 FISS sample declined when applied to otolith 
images collected during the 2024 survey, reflecting the challenges of temporal generalization. 
On average, the root mean squared error (RMSE) increased to 2.562, representing an 
approximate 42% increase compared to the 2019 test set. Furthermore, the proportion of 
predictions within ±1 year of the manually assigned age dropped by 16.7 percentage points, 
indicating a decline in predictive accuracy. 
However, the use of a deep ensemble approach enabled a more nuanced evaluation of model 
reliability. Specifically, the ensemble framework provided per-sample uncertainty estimates 
(measured as the standard deviation across model predictions), which helped distinguish 
between confidently and less confidently predicted samples. This enabled stratification of 
predictions by uncertainty level. 
Figure 8 shows the cumulative proportion of 2024 test samples for which the ensemble prediction 
falls within ±1 year of the manually assigned age, as a function of increasing prediction 
uncertainty (measured by the standard deviation across the ensemble). The curve confirms that 
predictions with lower uncertainty levels tend to be more accurate. For the least uncertain subset 
of the test data (e.g., the first ~20%), accuracy within ±1 year exceeds 80%, while this metric 
gradually declines as predictions with higher uncertainty are included. By the time the entire 
sample is considered, accuracy drops to approximately 59%. 
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Figure 8: Proportion of ensemble predictions within ±1 year of manual age as a function of cumulative 
share of the test sample, ordered by prediction uncertainty (standard deviation). 

Fine-tuning the model 
To assess the impact of fine-tuning on model generalization across years, the ensemble 
originally trained on 2019 FISS images was fine-tuned using a randomly selected 20% subset 
of otoliths collected in 2024. The model was then evaluated on the remaining unseen 80% of 
2024 images. Fine-tuning yielded measurable improvements: the average RMSE across 
ensemble runs decreased from 2.562 to 2.396, and the proportion of predictions within ±1 year 
of the manually assigned age increased from 55.4% to 57.6%. 
In a separate analysis, the fine-tuning subset was selected based on uncertainty rather than 
random sampling. Specifically, 20% of 2024 images with the highest standard deviation across 
ensemble predictions - interpreted as the most ambiguous or noisy samples - were used for fine-
tuning. This targeted approach led to further gains in predictive accuracy. When evaluated on 
the remaining 80%, the model achieved an RMSE of 2.150. 
Predicting region of collection 
In September 2024, the SRB made the following recommendation: 

The SRB RECOMMENDED that the Secretariat investigate using the AI to identify region 
of collection. Otolith shape is sometimes used as a tool for understanding mixing and 
stock structure and the AI may have skill in identifying region of origin (and thus mixing 
and migration rates) from otolith images. (IPHC–2024–SRB025–R, par. 47) 

In response, the InceptionV3 architecture model was rewritten to perform classification task, 
predicting IPHC Regulatory Areas (categorical label) from otolith images. The model was trained 
on the 2019 FISS dataset, and performance was evaluated using three test scenarios:17 

• Test set from 2019 (same year as training data): 

 
17 Each model was run three times to account for variability due to random initialization. 
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The model achieved strong performance, with overall accuracy between 90% and 95%. 
Misclassifications were minimal and typically involved geographically adjacent areas. 
(See Figure 8a: Confusion matrix – 2019 test set) 

• Test set from 2024 (no fine-tuning): 
When applied directly to otoliths collected in 2024, the model’s predictive accuracy dropped 
sharply. Most images from multiple regulatory areas were misclassified as belonging to IPHC 
Regulatory Area 2C, suggesting a model bias toward centrally-located region. 
(See Figure 8b: Confusion matrix – 2024 test set without fine-tuning) 

• 2024 test set with 20% samples used for fine-tuning: 
To improve temporal generalization, the model was fine-tuned using a 20% subset of the 2024 
dataset, then evaluated on the remaining 80%. This approach substantially improved 
classification accuracy, yielding correct results for 88.4% samples. Predictions for Regulatory 
Areas 2B and 2C were particularly improved, with confusion concentrated around adjacent 
boundaries. 
(See Figure 8c: Confusion matrix – 2024 test set with fine-tuning on 20% samples) 
In addition, regional prediction was also evaluated using surface images (i.e., unprocessed 
otoliths). These models achieved promising results, with overall accuracy ranging between 87% 
and 91%, when trained on full sample of surface images (5,557 images). However, this 
evaluation was limited to data from a single year. As no multi-year dataset of surface images 
was available, it was not possible to assess the model's robustness or generalization across 
time for surface-based classification. 
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Panel a: 2019 test set 

 
Panel b: 2024 test set without fine-tuning 

 
Panel c: 2024 test set with fine-tuning on 20% samples 

Figure 9: Confusion matrices representing results from predicting IPHC Regulatory Areas (categorical 
label) from otolith images. 

Surface images 
This analysis examined whether otolith images captured prior to processing (surface images) 
can be used to reliably predict fish age using AI models, and how their performance compares 
to the use of images of processed otoliths. The goal was to evaluate both the viability and 
potential accuracy of surface images as a practical alternative. 
Three configurations were tested:  

1. BB match: The model was trained using 2,696 sectioned and baked otolith images 
collected during the 2024 FISS, for which matching surface images were also available 
(5 runs). 

2. Surface match: The model was trained on the same selection of 2,696 surface images 
(5 runs) to allow a direct comparison under identical input conditions (sample size and 
age distribution). 

3. Surface ALL: A model was trained using the full set of 5,557 available surface images, 
maximizing data size (3 runs). 

The comparative analysis of otolith surface images and images of processed otoliths (see 
Table 1) demonstrated that surface images are a viable alternative for AI-based age prediction. 
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When models were trained on matched datasets, predictive performance using surface images 
was comparable to that of processed otoliths images, with similar test set MSE and R² values. 
Furthermore, the model trained on the full set of 5,557 available surface images achieved strong 
results, with an average test MSE of 0.00298. These findings suggest that surface images, when 
available in sufficient quantity, can potentially match models based on processed otoliths. This 
highlights the potential to streamline future otolith ageing workflows by relying on unprocessed 
images without compromising predictive accuracy. However, it is important to note that this 
evaluation was limited to data from a single year. In the absence of a multi-year surface image 
dataset, it was not possible to assess the temporal robustness or generalization capability of the 
surface-image-based models. 
Table 1: Average results of model configurations used to assess viability of surface images for AI-
based ageing. 
 BB match Surface match Surface ALL 
Epochs trained 231 223 229 
Validation MSE 0.00273 0.00298 0.00284 
Test MSE 0.00315 0.00297 0.00298 
R2 0.79 0.80 0.79 
Run time (VM) 159 164 345 

CONCLUSIONS 
The ongoing advancement of AI technologies in the field of marine science offers considerable 
potential to enhance the efficiency of age determination of Pacific halibut using otolith images. 
Preliminary results presented here suggest that convolutional neural networks (CNNs), 
particularly when implemented using a deep ensemble approach, could provide predictive 
accuracy that supports their use as a supplement- or in some cases, a potential alternative - to 
the current manual ageing protocol. 
Among the models tested, the InceptionV3 architecture outperformed newer and more complex 
architectures such as EfficientNet and ConvNeXt. This outcome likely reflects the relatively 
limited size and variability of the training dataset, which favors architectures with fewer 
parameters and less sensitivity to overfitting. While deeper models may eventually outperform 
simpler ones with more data and advanced tuning, InceptionV3 currently offers the most robust 
and consistent performance for this application. 
These results also highlight the practical value of the deep ensemble framework. In addition to 
improving predictive performance, ensemble-based models provide per-sample uncertainty 
estimates that can be used to identify potentially unreliable predictions. This enables a mixed-
method protocol in which low-confidence predictions (e.g., those with high standard deviation 
across ensemble members) can be flagged for expert review, while high-confidence outputs may 
be accepted directly - streamlining the ageing workflow while maintaining accuracy. 
Results also showed that model performance deteriorates when predictions are made on data 
collected in years different from the training sample (i.e., temporal generalization is limited). 
However, modest fine-tuning with current-year data improved predictive performance, reducing 
RMSE of predictions and increasing accuracy within ±1 year of expert labels. When fine-tuning 
was focused specifically on uncertain samples - those with the highest variance across 
ensemble predictions - performance gains were even better. These findings confirm that 
targeted fine-tuning, guided by uncertainty, is an effective strategy for adapting models to new 
data while minimizing manual ageing need. 
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Surface images also showed promise as a practical input for ageing models. When trained on 
matched datasets, models using unprocessed surface images performed comparably to those 
using sectioned and baked otoliths. These findings point to the possibility of eliminating otolith 
processing steps for AI-based ageing in the future, though further multi-year evaluation is 
needed to confirm long-term robustness. 
Despite promising progress, important limitations remain. Statistically significant bias was 
observed in predictions for the oldest age categories (21+), which remain underrepresented in 
the training dataset. Only 2.6% of otoliths used in the main model were from fish aged 21 or 
older, suggesting that improved model accuracy for older fish will require supplementing 
database in a targeted manner with images from older fish. Expanding the dataset to improve 
representation across all age classes especially older individuals will be essential to reduce 
residual bias and ensure model reliability across the full biological age range. 
Finally, it is crucial to emphasize that AI-based ageing models must continue to rely on human 
experts, both for validation and for providing high-quality training data that reflect temporal, 
spatial, and environmental variability. As environmental conditions and stock structure continue 
to change, integrating expert oversight and continual model updating will remain a critical part 
of accurate AI implementation for ageing process. 
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APPENDIX A: COUNTS OF OTOLITHS AGED BY THE IPHC 

Collection 
year 

Ageing 
method IPHC FISS* 

Commercial 
(Market 

Sample)* 
NOAA Trawl 

survey* 
Tag 

recovery* 
ADF&G 

recreational* 
Clean 

collection 
pre-1960 surface 70,984     10,068     

1960 surface 6,606     681     

1961 surface 4,727   4,576 842     

1962 surface 2,605   1,692 594     

1963 surface 8,257   2,209 440     

1964 surface 10,295 27,828 1,001 353     

1965 surface 5,169 27,252 1,186 493     

1966 surface 3,750 24,638 1,777 796     

1967 surface 6,325 29,797 2,271 1,151     

1968 surface 2,314 29,772 1,887 1,813     

1969 surface 1,510 23,361 1,019 1,869     

1970 surface 1,138 24,686 1,184 867     

1971 surface 2,702 16,374 2,294 732     

1972 surface 2,597 23,381 1,180 490     

1973 surface 1,747 16,683 893 244     

1974 surface 1,021 11,569 1,189 128     

1975 surface 1,212 14,128 1,136 131     

1976 surface 1,843 14,103 969 72     

1977 surface 1,853 13,514 1,102 83     

1978 surface 1,933 11,434 1,309 61     

1979 surface 2,021 7,219 730 93     

1980 surface 5,022 10,317 717 168     

1981 surface 7,942 8,267 460 129     

1982 surface 5,720 9,644 443 208     

1983 surface 5,822 9,262 1,355 286     

1984 surface 6,508 10,233 1,089 455     

1985 surface 5,872 12,986 1,192 778     

1986 surface 5,139 12,426 1,120 1,020     

1987 surface 42 16,137   859     

1988 surface 1,179 17,154 98 761     

1989 surface 6,130 14,122   710     

1990 surface 2,201 14,800 4,802 397     

1991 surface 1,315 13,461 2,598 280     

1992 surface/BB 7,530 14,564 222 182     

1993 surface/BB 3,384 13,747   147     

1994 surface/BB 2,618 13,311   99     

1995 surface/BB 4,512 12,297 433       

1996 surface/BB 10,893 13,452 2,211       

1997 surface/BB 14,784 15,501 834 148     

1998 surface/BB 8,587 14,395 1,145 98     
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1999 surface/BB 11,971 12,858 3,029 70 3,672   

2000 surface/BB 14,122 13,982 1,209 46 2,706   

2001 surface/BB 14,731 13,181 2,952 27 2,609   

2002 BB 13,635 17,932 761 24 2,349   

2003 BB 12,626 13,915 3,876 79 2,754   

2004 BB 14,474 11,798 897 450 3,288   

2005 BB 12,651 14,650 2,028 643 3,183   

2006 BB 14,976 13,399 2,621 679 3,179   

2007 BB 16,285 13,964 3,930 455 3,026   

2008 BB 15,545 13,460 1,527 304 1,500    

2009 BB 15,706 13,583 4,922  276 1,500    

2010 BB 14,080 16,106 1,915  21 1,500  625 

2011 BB 14,451 11,391 4,592  26 1,500  676 

2012 BB 17,896 12,902 1,639  9 1,500  1164 

2013 BB 12,717 11,039 2,044  19 1,503  1020 

2014 BB 16,194 12,606 1,476  22 1,500  1096 

2015 BB 15,815 12,312 2,133  24 1,500  1072 

2016 BB 15,113 11,618 742  21 1,502  902 

2017 BB 12,565 10,821 1,384  15 1,500  756 

2018 BB 12,935 11,013 576  39 1,499  798 

2019 BB 17,716 10,711 1,640  34 1,497  925 

2020 BB 10,323 10,568 - 34 1,413  577 

2021 BB 12,253 11,051 1,444 38 1,500  547 

2022 BB 9,702 10,942 1,902  39 2,334  519 

2023 BB 8,506 10,932 (3,147) (48) (1,958) 462 

2024 BB 5,770 10,4741 (1,058) (61) (1,542) 458 
Notes: 

• Star (*) indicates blind side otolith. 
• BB stands for ‘break and bake’ approach. 
• All otoliths reported in this table were aged with the exception of the clean collection. 
• All aged otoliths are stored in glycerol/thymol solution. 
• Some small fish from trawl survey collection are still aged by surface method; otoliths with surface age>4 are sectioned 

and baked. 
• Sample data not entered prior to 1960 for FISS, 1964 for commercial, 1961 for NOAA trawl survey. 
• Clean collection is not aged, stored dry, and include paired otoliths. 
• Tribal otoliths are included in the Market Sample series. 
• Additionally, there are 144 not aged 2A recreational otoliths, all from Hein Bank collected between 2004 and 2009. 
• Sex information available since 2017 (typically ca. 1 year of lag). 
• Trawl and recreational otoliths lag one year in ageing. 
• In brackets, otoliths available for ageing but ageing not completed. 

¹ Commercial otolith collection subsampled: 10,474 otoliths were collected, 7,057 were selected for ageing 
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APPENDIX B: SELECTION OF MODEL RUNS 
Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
SETUP    **            ** 
Architecture Inceptio

nV3 
Inceptio
nV3 

Inceptio
nV3 

Inceptio
nV3 

Efficient
NetB4 

Efficient
NetB4 

Efficient
NetB4 

Efficient
NetB5 

Efficient
NetB5 

Efficient
NetB5 

Efficient
NetV2 S 

Efficient
NetV2 
M 

Efficient
NetV2 L 

ConvNe
Xt 

ConvNe
Xt 

Inceptio
nV3 

Max epochs 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 
EarlyStopping 
patience 

50 100 100 80 50 50 50 50 50 50 60 50 100 100 60 80 

ReduceLROnPlateau NA NA NA 40/r=0.6 NA NA NA NA NA NA 30 /f=.8 30 /f=.8 50 / 
f=0.5 

50 / 
f=0.9 

30 /f=.8 40/r=0.6 

Learning rate (initial) 0.0002 0.0004 0.0004 0.0002 0.0004 0.0002 0.0004 0.0004 0.0004 0.0004 0.0016 0.0004 0.0008 0.0016 0.0016 0.0002 
Batch size 16 8 16 16 16 16 8 8 16 4 8 8 8 16 12 16 
Image size 400 400 400 400 380 380 380 456 456 456 384 480 512 224 224 400 
Dropout rate 0.2 0.2 0.2 0.2/0.25 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2/0.25 
L2 parameter 0.025 0.025 0.025 .025 0.025 0.025 0.025 0.025 0.025 0.025 0.03 0.025 0.025 0.025 0.025 0.025 
Augmentation1 NA NA NA Full Full Full Full Full Full Full Full Full Full Full Full Full 
RESULTS                 
Validation MSE 0.00195 0.00167 0.00156 0.00170 0.00334 0.00372 0.00444 0.00414 0.00308 0.00375 0.00865 0.00223 0.00789 0.00856 0.00334 0.00163 
Epochs trained 92 297 249 260 156 109 80 126 128 166 142 123 224 199 138 318 
Test MSE 0.0023 0.0021 0.0020 0.0019 0.0032 0.0040 0.0044 0.0038 0.0030 0.0041 0.0087 0.0025 0.0087 0.0087 .0087 0.0019 
R2 * * * .77 * * * * * * * * * * * 0.78 
RMSE-unscaled 1.986 1.880 1.877 1.834 2.341 2.591 2.718 2.543 2.254 2.649 * 2.072 3.833 * * 1.782 
Correctly predicted 29.5% 33.6% 31.7% 31.7% 21.3% 15.6% 22.9% 31.1% 27.9% 26.9% * 26.5% 19.3% * * 30.4% 
Correctly predicted 
with ±1 year tolerance 

75.6% 77.4% 78.8% 72.1% 55.4% 43.9% 63.9% 72.1% 75.3% 70.8% * 75.6% 65.1% * * 74.4% 

RUN parameters                 
Machine2 DS DS DS MM QS QS QS QS QS QS QS QS QS QS QS VM 
Run time in hours 14.0 47.3 35.2 11 * * * 30.0 32.3 38.9 12.3 29.0 116.4 45.3 45 4 
RESULTS for 2024                 
RMSE-unscaled 2.852 2.864 2.970 2.779 3.057 3.274 * * * * * 2.801 * * * 2.696 
Correctly predicted 18.0% 18.0% 19.3% 19.0% 17.7% 10.9% * * * * * 15.7% * * * 19.9% 
Correctly predicted 
with ±1 year tolerance 

52.5% 48.3% 50.4% 50.2% 46.4% 32.8% * * * * * 48.9% * * * 54.9% 

Note: All models for randomly selected seed numbers – individual results would vary. 
1: Full augmentation setup included rotation range=360, width shift range=0.1, height shift range=0.1, brightness range=[0.95, 1.05], and zoom range=[0.98, 1.02]. 
2: Machine setups were as follows: 

• QS: 11th Gen Intel(R) Core(TM) i7-11700K @ 3.60GHz; 8 cores 
• DS: 12th Gen Intel(R) Core(TM) i7-12700; 12 cores 
• MM: AMD Ryzen 9 5900X; 12 cores 
• VM: AMD EPYC 7V12 64-Core Processor with Nvidia Tesla T4 GPU 

* Indicates values not recorded for the given run. 
**Indicates models selected for further investigation. 
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APPENDIX C: DEEP ENSEMBLE INDIVIDUAL RESULTS 
Model run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 AVERAGE 
Epochs trained 194 557 172 159 318 235 263 338 204 380 192 483 292 174 364 288 
Validation MSE 0.0017 0.0015 0.0017 0.0017 0.0016 0.0017 0.0015 0.0016 0.0018 0.0015 0.0017 0.0015 0.0014 0.0016 0.0016 0.0016 
Test MSE 0.0020 0.0018 0.0021 0.0022 0.0019 0.0019 0.0019 0.0018 0.0021 0.0017 0.0020 0.0017 0.0018 0.0019 0.0018 0.0019 
R2 0.776 0.797 0.756 0.749 0.783 0.784 0.779 0.794 0.764 0.804 0.774 0.809 0.797 0.785 0.796 0.783 
Rum time (VM, min) 148 418 133 123 240 179 203 256 156 286 148 369 223 134 276 219 
RESULTS – TEST SET                 
Test RMSE unscaled 1.819 1.742 1.908 1.960 1.782 1.786 1.817 1.757 1.876 1.719 1.856 1.693 1.741 1.814 1.745 1.80 
Correctly predicted 30.0% 30.6% 28.9% 23.5% 30.4% 31.3% 32.0% 31.4% 28.7% 32.5% 30.6% 32.1% 33.6% 29.0% 30.4% 30.3% 
Correctly predicted with ±1 
year tolerance 

72.0% 74.5% 69.8% 64.6% 74.3% 71.3% 73.3% 74.4% 69.5% 74.5% 69.2% 75.1% 72.6% 71.3% 74.2% 72.0% 

RESULTS – 2024 IMAGES                 
RMSE 2.509 2.472 2.598 2.844 2.514 2.539 2.631 2.498 2.613 2.477 2.660 2.548 2.481 2.519 2.518 2.562 
Correctly predicted with ±1 
year tolerance 

56.8% 57.4% 55.4% 52.7% 55.9% 55.1% 55.2% 55.5% 54.0% 58.8% 52.1% 57.1% 56.3% 52.1% 56.0% 55.4% 

RMSE – fine-tuned on 20% 
images 

2.378 2.350 2.451 2.418 2.328 2.404 2.396 2.389 2.440 2.331 2.493 2.379 2.408 2.444 2.334 2.396 

Correctly predicted with ±1 
year tolerance– fine-tuned on 
20% images 

59.7% 58.0% 54.4% 56.2% 59.1% 56.5% 58.0% 57.5% 57.0% 59.7% 56.3% 58.8% 57.0% 57.1% 58.4% 57.6% 

RMSE – fine-tuned on 20% 
images with highest standard 
deviation 

2.151 2.105 2.142 2.211 2.069 2.133 2.159 2.108 2.270 2.073 2.280 2.084 2.116 2.260 2.089 2.150 

Correctly predicted with ±1 
year tolerance– fine-tuned on 
20% images with highest 
standard deviation 

56.3% 59.4% 58.7% 53.7% 60.9% 59.0% 57.6% 59.3% 52.1% 57.9% 51.6% 60.5% 59.1% 52.8% 60.2% 57.3% 
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