INTERNATIONAL PACIFIC

Report on current and future Biological and Ecosystem Science Research activities

Agenda item: 4.1.1 IPHC-2025-SRB026-06 (J. Planas, C. Dykstra, A. Jasonowicz, C. Jones)

Population Genomics

Objective: Resolve the genetic structure of the Pacific halibut stock in IPHC Convention Waters

NPRB Project 2110 (2022-2024)

- Low-coverage whole-genome resequencing (IcWGR)
- Allows for screening genomic variation at very high resolution
- Conducted one additional sequencing run:
 - NovaSeq X Plus 25B additional 384 samples.
 - To increase and balance sample sizes for the baseline set of sample collections.
 - To add summer collected samples near the latitudinal extremes of the range.

Population Structure – Additional samples

Methods:

Bioinformatic processing described in <u>IPHC-2023-</u> <u>SRB022-09</u> with the following modifications:

- Removed individuals if average sequencing depth was < 1x.
- Used ngsParalog (v1.3.3) to identify genomic regions that are problematic for sequence read alignment.

Results:

- Average coverage of 2.4x
- Included 161 additional baseline samples (731 total)
- Included 327 summer collected samples
- ~3.7 M SNPs retained for downstream analyses

Winter Collections (baseline samples)							
	1999	2004	2007	2018	2020		
British Columbia (winter)	59	63	61				
GOA (winter)	61	61	61	60			
Bering Sea (winter)		61	61				
Central AI (winter)			61		61		
Western Al (winter)					61		

Summer Collections							
	2013	2016	2019	2022	2024		
Northern CA (summer)	46						
Southern OR (FISS)				45			
GOA (NMFS Trawl)			41				
Bering Sea (NMFS Trawl)		20	75	48			
Northern Bering Sea (FISS)				48			
Rausu (summer)					4		

Population Structure – PCA & K-means clustering

- British Columbia (winter)
- GOA (winter)
- Bering Sea (winter)
- Central AI (winter)
- Western AI (winter)

- Estimate covariance matrix (PCAngsd)
- Eigendecomposition (R)
- \succ Iterative outlier removal procedure (> |6 σ | along one of the top 3 PCs, up to 10 iterations) \checkmark 22 individuals removed (n=709 in final PCA)
- K-means clustering (top 3 PCs)

K-means clustering (top 3 PCs)

Assignment Testing – Methods

Assignment Testing - WGSassign

- Reference populations defined by geographic area
- Simple Training Holdout procedure
- Recommended approach by Anderson (2010) when selecting SNPs based on allele frequency
- Referred to as the "gold standard" by Anderson (2010) and Waples (2010)

Anderson, E.C. 2010. Assessing the power of informative subsets of loci for population assignment: Standard methods are upwardly biased. Mol. Ecol. Resour. 10(4): 701–710
Waples, R.S. 2010. High-grading bias: Subtle problems with assessing power of selected subsets of loci for population assignment. Mol. Ecol. 19(13): 2599–2601.

Assignment Testing – Results

50-50 train/test split

- 33.14% assignment accuracy
- All samples assign back to Gulf of Alaska with > 95% probability

Equal number per area (n=45)

- 27.27% assignment accuracy
- 8.06% unassigned samples

Conclusions

- Improved quality of the baseline dataset by increasing and balancing sample sizes.
- Results were very similar to those reported in <u>IPHC-2024-SRB024-09</u> and continue to support the concept of a single genetic group in IPHC Convention Waters:
 - Unsupervised clustering methods failed to identify discrete genetic groups of Pacific halibut.
 - Limited ability to assign individuals back to the location in which they were sampled.

Next Steps

• Incorporate summer samples into existing analyses to examine and compare patterns of population structure over a larger spatial scale.

Publications: Fish et al. (2020) *J. Fish Biol.* **97**: 1880–1885 Fish et al. (2022) *Frontiers in Mar. Sci.* **9**: 801759 Simchick et al. (2024) *Gen. Comp. Endocrinol.* **347**: 114425

Reduce uncertainty in stock size and fishing intensity

2022-2024 FISS Collection for Histological Assessment

Histology-based ogives by biological region and year

- GAM s(log(Age) * Region)
 + Year * Region
- AIC = 2327.73
- k = 5

EDF Region 2 = 2.99 Region 3 = 2.36 Region 4 = 1.00 Region 4B = 1.00

2024

INTERNATIONAL PACIFIC HALIBUT COMMISSION

Histology-based ogives by biological region and year

- GAM s(log(Age) * Region) \bullet + Year * Region
- AIC = 2327.73
- k = 5

EDF Region 2 = 2.99 Region 3 = 2.36 Region 4 = 1.00 Region 4B = 1.00

ALIBUT COMMISSION

Histology-based ogives by biological region (2022-2024)

- GAM s(log(Age) * Region)
- AIC = 2414.87
- k = 5
- EDF
 - Region 2 = 3.17 Region 3 = 2.27 Region 4 = 1.00 Region 4B = 1.00

INTERNATIONAL PACIFIC HALIBUT COMMISSION

Histology-based coastwide ogive

- GAM s(log(Age) * Region)
- Coastwide ogive calculated from weighted regional ogives using average FISS space-time model abundance estimates from 2022-2024
- Coastwide ogive falls between Biological Regions 2 and 3

Female Developmental Stages: 2022-2024

• Earlier maturation in Regions 4 and 4B

• Oocyte development progressively faster from east (Region 2) to west (Region 4B)

Histology-based ogive

2025 FISS Collection

Biological Region	2025 (Target)
2	400
3	400
4	188
4B	414
Total	1,402

Visual (macroscopic)-based ogives by biological region (2022-2024)

- GAM s(log(Age) * Region)
- AIC = 2518.67
- k = 8
- EDF
 Region 2 = 4.46
 Region 3 = 4.46
 Region 4 = 1.00
 Region 4B = 1.02

Visual (macroscopic)-based coastwide ogive (2022-2024)

- GAM s(log(Age) * Region)
- Coastwide ogive calculated from weighted regional ogives using average FISS space-time model abundance estimates from 2022-2024

Histology-visual ogive calibration

- Calibration between visual and histology estimates from 2022-2024
- The calibration factor at age, $\delta(a)$, is estimated as the difference between the histological and visual model estimates of maturity at age a on the logit scale.
- Estimated for each Biological Region
- Positive = shifted up for a given age Negative = shifted down

Calibrated historical visual-based coastwide ogive (2002-2024)

- Coastwide fitted visual maturity ogives by year estimated using three-year rolling data windows
- Applied calibration factor to obtain coastwide calibrated visual ogives
- Averaged across all three-year rolling data windows to obtain final coastwide calibrated visual maturity ogive (i.e. 2003-2005, 2004-2006, etc.)

Visual (macroscopic)-based estimates

- Comparison of new coastwide calibrated visual ogive (2002-2024) vs. current assessment ogive (2002-2003)
- Visual maturity estimates from the average 2002-2024 calibrated coastwide ogive are slightly to the left of current assessment ogive
- Truncated to zero < Age 7

Conclusions

- Histology-based maturity estimates:
 - > Region 3 continues to show higher proportion of mature females at younger ages
 - Regional and coastwide ogives have shifted to the left from 2022-2024
- Visual-based maturity estimates:
 - Maturity estimates have shifted back and forth from 2002-2024 (not consistent)
 - > Calibrated coastwide ogive has shifted slightly to left of current assessment ogive
- Fecundity (next step in reproductive journey):
 - Samples collected in 2023 and 2024 (continue in 2025+)
 - > Question: Is female Pacific halibut fecundity proportional to body weight?

3. Mortality and Survival Assessment

4. Fishing technology

External funding: Bycatch Reduction Engineering Program NOAA NA21NMF4720534 (2021-2023), NA23NMF4720414 (2023-2025) Publications: Lomeli et al. (2021) *Fisheries Research* **233**: 105737 Lomeli et al. (2023) *Ocean & Coastal Management* 2**41**: 106664

4. Fishing technology

Reducing whale depredation by protecting longline catches

Next phase: Testing shuttle in the presence of depredators

Secured funding from NOAA BREP 2023 NA23NMF4720414

- Objectives:
 - 8 days of fishing in the presence of Orcas on the F/V Oracle.
 - Further refinements (attachment protocols, gangion/hook strength).
 - Catch rate comparisons with and without shuttle device.
 - Catch composition details (size ranges, species, catch volume).
- Field study scheduled for May 2025 in IPHC Regulatory Area 4A.

Summary of awarded research grants to IPHC

Project #	Grant agency	Project name	Pl	Partners	IPHC Budget (\$US)	Management implications	Grant period
1	Bycatch Reduction Engineering Program-NOAA	Full scale testing of devices to minimize whale depredation in longline fisheries (NOAA Award Number NA23NMF4720414)	IPHC	Alaska Fisheries Science Center-NOAA	\$199,870	Mortality estimations due to whale depredation	November 2023 – April 2026
2	Alaska Sea Grant	Development of a non-lethal genetic- based method for aging Pacific halibut (R/2024-05)	IPHC, Alaska Pacific U. (APU)	Alaska Fisheries Science Center-NOAA (Juneau)	\$60,374	Stock structure	January 2025- December 2026
				Total awarded (\$)	\$260,244		

INTERNATIONAL PACIFIC

HALIBUT COMMISSION

https://www.iphc.int/

INTERNATIONAL PACIFIC HALIBUT COMMISSION