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PURPOSE 

This document summarizes the information available on the use of artificial intelligence (AI) for 
determining the age of fish from images of collected otoliths and provides an update on the 
exploratory work of implementing an AI-based age determination model for Pacific halibut. 

The purpose of this document is twofold. First, to provide a background in support of developing 
a protocol for creating a database of pictures with expert-provided labels for ageing use. Second, 
to propose an AI-based modeling approach for supplementing current Pacific halibut ageing 
protocol. 

BACKGROUND 

Otoliths are crystalline calcium carbonate structures, mostly in the form of aragonite, found in 
the inner ear of fish. They contain growth rings, that are often compared to tree growth rings. By 
analyzing the growth patterns in otoliths, scientists estimate the age of fish (Campana, 1999; 
Campana & Neilson, 1985), supporting the estimation of fish population demographics and 
population dynamics (Campana & Thorrold, 2001). In turn, fish age is a key input to stock 
assessment models that inform management decisions related to fish exploitation (Methot & 
Wetzel, 2013). It is estimated that the number of otoliths from captured fish that are read annually 
worldwide is on the order of one million (Campana & Thorrold, 2001). 

The current method for determining ages of most fish species relies on manually extracting, 
preparing (embedding, sectioning), and reading otoliths. The simplest approach to reading the 
otolith is to immerse it in a clear liquid, such as water or alcohol solution, illuminate it from above, 
and view it against a dark background, using a stereo microscope. This method is suitable only 
for otoliths that are relatively thin with all annual bands visible from the surface. For species such 
as Pacific halibut, as the growth rate of the fish slows down, the outer growth bands become 
increasingly compressed and difficult to read from the surface of the whole otolith. To correctly 
determine the number of annual bands in such cases, otoliths are typically viewed in cross 
section which allows viewing the bands that are not visible from the surface view. In addition, 
the contrast between the growth rings can be enhanced through the baking process. Pacific 
halibut otoliths are aged using the ‘break and bake’ technique. 

This manual ageing process is expensive, time-consuming,1 and can be subject to bias2 as well 
as imprecision due to variations in age estimations between readers and within readers over 

 
1 While the actual reading may account only for a fraction of the total cost and time required to process the otolith 
from collection to age determination, skilled readers require years of training, which should be considered when 
conducting a cost-benefit analysis. 
2 While the count of annual rings on Pacific halibut otoliths was found to provide unbiased age estimate using 
validation against bomb radiocarbon isotopes (Piner & Wischniowski, 2004), an earlier oxytetracycline (OTC) mark-
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time. Recent advances in imaging technologies and machine learning suggest that AI can assist 
in this process by automating the analysis of otolith images3 and identifying and measuring the 
growth rings to determine age. AI algorithms can be trained on a large dataset of otolith images 
with known ages to learn the patterns and variations in growth rings. Once trained, the AI model 
can analyze new otolith images and predict the age of the fish based on the identified patterns 
in the image. 

Using AI for age determination of Pacific halibut could improve consistency and replicability of 
age estimates, as well as provide time and cost savings to the organization, providing age data 
for reliable management advice. However, it's important to note that the AI model's accuracy 
depends on the quality and diversity of the training data, as well as the expertise of the scientists 
involved in training and validating the model. Regular validation and calibration with manual age 
determinations is necessary to ensure the accuracy and reliability of the AI predictions. Thus, 
the proposed approach integrates AI-based age determination and traditional ageing methods 
for maximum accuracy of the estimates. 

MODEL 

The model framework (Figure 1) includes a continuous process of training the model using 
available labelled data (aged otoliths), querying the model to select the next sample, labeling or 
relabeling the selected sample, and enriching the model with newly labelled samples. 

This model relies on automatized ageing that is supplementing the expert-derived age estimates 
continuously improving the model in the Label phase and the Enrich phase. 

 

Figure 1: Model framework. 

 
recapture study indicated biases among age readers (Blood, 2003). In the 1980s, the IPHC applied injections with 
the antibiotic oxytetracycline (OTC) during routine tagging operations to evaluate validity of ageing method (IPHC, 
1985). Upon injection, the OTC is absorbed by the fish's bony structure, including the otoliths, and leaves a mark 
that is easily seen when viewed under an ultraviolet light. When an OTC-injected tagged fish is recovered, the 
otoliths are removed and examined under the ultraviolet light. By comparing the number of annuli laid since the 
OTC mark to the fish recovery, the accuracy of the age readings can be determined. 
3 Although the idea of taking pictures of Pacific halibut otoliths is not new. See 1960 report by G. Morris Southward, 
Photographing Halibut Otoliths for Measuring Growth Zones (Southward, 1962). 

Enrich
Add newly 

labeled sample 
to the training 

data

Train
Train model 

based in 
labeled data

Query
Use trained 

model to select 
the next 
sample

Label
Label or re-

label the 
selected 
sample



IPHC-2025-AM101-INF03 

Page 3 of 12 

Modeling approach 
Previous literature (see perspective piece by Malde et al., 2020) suggests adapting a pre-trained 
convolutional neural network (CNN) designed for image classification to estimate age using 
otolith images obtained via microscope camera. This type of model is trained on a large 
collection of images of otoliths previously aged by human readers. Moen et al. (2018) presents 
the first case of the use of deep learning and CNN to estimate age from images of whole otoliths 
of Greenland halibut (Reinhardtius hippoglossoides).4 

Artificial neural networks (ANNs) are computational structures inspired by biological neural 
networks. They consist of simple computational units referred to as neurons, organized in layers. 
The neuron parameters (or weights) are estimated by training the model using supervised 
learning. This process consists of two steps: forward propagation, where the network makes a 
prediction based on the input; and back propagation, where the network learns from its mistake 
by calculating the gradient of a loss function, and then uses the gradient to update the neuron 
weights. The ANNs approach has been used for fish ageing by Robertson & Morison (1999) and 
Fablet & Le Josse (2005) with a limited success. 

The neural networks approach significantly improved in recent years with the increase in the 
number of layers, applying an approach often referred to as deep learning. Deep learning neural 
networks are known for their generality. With sufficient training data, they can be used to classify 
raw data (e.g., an array of pixels) directly, without explicit design of low-level features. The deep 
learning algorithm lower layers learn to distinguish between primitive features automatically, 
typically identifying sharp edges or color transitions. Subsequent layers then learn to recognize 
more abstract features as combinations of lower layer features, and finally merge this information 
to provide a high-level classification. 

In CNNs (LeCun et al., 1998; Simonyan & Zisserman, 2015), the layers are structured as stacks 
of filters, each recognizing increasingly abstract features in the data. Convolutional layers may 
be understood as an efficient way to transform an input image into another image, highlighting 
meaningful patterns, learned from data during training. The training is sequential, meaning the 
output of each layer is the input of the next layer, and the useful features are learned in the 
various layers during training. This approach is very effective for many image analysis problems, 
where objects are often recognized independent of their location. During network training, the 
performance is monitored over sequential epochs. Epochs represent the number of times that 
the training dataset is passed forward and backward through the network to refine model 
weights. Whenever the validation loss decreases, the trained model is saved, ending up with the 
network that corresponds to the minimum loss and highest accuracy on the validation set. The 
trained network is then evaluated on the testing set. 

In the CNN model, prediction of age can be defined as a classification task (age as a class 
category) or image regression, that is a task of predicting a continuous variable from an image, 
in this case prediction of age as a numeric value from an otolith image. Both approaches can be 
tested for devising a method better suited for Pacific halibut. Considering fish age as a discrete 
parameter is a common approach used to identify the individual year class, i.e. grouping fish 
originating from the spawning activity in a given year (Moen et al., 2018), although this may be 

 
4 CNN was also applied for other tasks related to fisheries management, e.g. fish species identification (Allken et 
al., 2019). 
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less appropriate for long-living species with a larger number of age categories in the sample. 
The oldest Pacific halibut on record were aged at 55 years (Keith et al., 2014). 

Software options 
The proposed approach follows that of Moen et al. (2018) and Moore et al. (2019) who chose 
TensorFlow and Keras libraries to implement and train the model. TensorFlow is currently the 
largest and most popular library available for deep learning. Keras is a high-level API which runs 
on top of TensorFlow and simplifies implementation of TensorFlow models. 

The approach uses a transfer-learning technique to develop a CNN for otolith age estimation. 
Transfer learning is the process of repurposing a machine learning model that has been pre-
trained for another, related, task. Specifically, it starts with the Inception v3 model from Google, 
pre-trained on the ImageNet database. ImageNet database contains over 14 million 
(14,197,122) annotated images classified intro 1000 categories. The CNN layers are loaded with 
pre-trained (with ImageNet data) and publicly available weights, as opposed to using random 
initialization. Various training meta-parameters contribute substantially to final accuracy by using 
a stochastic gradient descent (SGD) optimizer and by leaving all network layers as trainable. 

For the application to otolith ageing for Pacific halibut, the input layer was scaled to match the 
images’ resolution.5 The output layer was changed from a multi-dimensional output vector 
representing class probabilities to a single numeric output, effectively transforming it to a new 
regression layer.6 This design follows the following pattern: Input → InceptionV3 (feature 
extractor) → Classifier/Regressor → Output. At this point, the neural network is trained to 
minimize the mean squared error (MSE) between predicted ages and human expert age 
estimates,7 using the otolith images as inputs. 

A similar approach, although adopting classification approach, was applied for ageing Greek 
Red Mullet (Mullus barbatus) (Politikos et al., 2022) and the associated code is available on 
GitHub (github.com/dimpolitik/DeepOtolith). The available open-source code was adapted for 
testing the approach for Pacific halibut. 

Use of auxiliary data 
Precision of age predictions of otoliths using neural networks from geometric features could be 
potentially improved by using auxiliary data, for example, fish size or date and location of capture 
(Moen et al., 2018). Past IPHC work suggests a good deal of spatial variation in Pacific halibut 
growth ring patterns. This points to the importance of good spatial coverage in the training 
sample. Additionally, the project plans to explore the use of additional spatial covariates for better 

 
5 Resolution is the total number of pixels along an image's width and height, expressed as pixels per inch (PPI). 
The Inception v3 model processes images that are 299 x 299 pixels in size. The original images, which were 2548 
x 2548 pixels, were resized to 400 x 400 pixels. 
6 Alternatively, Politikos et al. (2021) replaced the last layer with a feed-forward network with two hidden layers 
replacing the default 1000-categories output layer with a fully-connected layer with six hidden nodes, corresponding 
to a limited number of age categories [Age-0 – Age-5+], with the last one representing fish of age 5 and older, In 
this case, the network outputs probabilities using the softmax function, a function that performs multi-class 
classification and transforms the outputs to represent the probability distributions over a list of potential outcomes. 
The IPHC uses in its stock assessment bins Age-2 – Age 25+ for the current age data and Age-2 - Age-20+ for the 
historical surface read ages. The adoption of a larger number of age categories prompted the decision to incorporate 
a regression layer in place of class probabilities. 
7 In practice, the neural network minimizes the MSE of normalized age values, i.e., age values divided by the 
maximum age provided as input. 

https://cloud.google.com/tpu/docs/inception-v3-advanced
http://www.image-net.org/
https://github.com/dimpolitik/DeepOtolith
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age prediction. Other available auxiliary data include year collected, which could be applied to 
account for variation between cohorts and prevalent environmental conditions throughout the 
aged fish life histories, and the collection dates, which provides insights into seasonal variation 
to the interpretation of the otolith edge. 

Database 
The IPHC annually ages a considerable number of otoliths (see Appendix for details). Since 
1925, over 1.5 million otoliths have been aged and stored for potential future use. Otoliths 
collected by the IPHC for ageing purposes undergo additional processing. Otoliths are sectioned 
(broken in half) and baked to enhance the contrast between the growth rings. These stored and 
previously aged otoliths serve as a valuable resource for creating a database of images for 
training purposes. To optimize model training, the selection of otoliths included in the model 
covers a broad spectrum of fish sizes, ages, sexes, and collection locations. 

Before photographing, processed otoliths were placed in a monochrome tray featuring an 
elongated groove designed to keep the otolith upright and immersed in water. The pictures were 
taken with AmScope 8.5MP eyepiece cameras,8 under consistent lighting conditions and 
magnification. The input database includes images of standardized size, 2548 by 2548 pixels, 
which are later resized to the desired resolution based on the model’s specification.9 

It is important to note that it may not be necessary to image the otoliths at resolutions sufficient 
for human viewers to resolve, because the CNN may be able to arrive at an age estimate without 
directly counting bands (Moore et al., 2019). 

Figure 2 shows an example of a range of images used in the CNN training dataset. 

    

Figure 2: Examples of Pacific halibut otolith images taken for inclusion in the training set. 

Note: In due course, the IPHC will create a database comprising labelled images of otoliths both 
pre- and post-processing and conduct a cost-benefit analysis of processing the otoliths for 
ageing using AI. The analysis will look at the accuracy improvement when using an image 
database containing images of processed (broken and baked) otoliths with enhanced contrast 
vs. those captured prior to processing (i.e. surface pictures). In their research, Politikos et al. 
(2022) utilized digital images of otoliths that were not subject to any additional processing in the 

 
8 The camera fits in one of the microscope eyepieces, eliminating the need to purchase a separate camera mount 
for the microscope. 
9 Moen et al. (2018) used images 400 by 400 pixels, which required the input layer to be scaled to match the images 
size as Inception v3 classifies by default images with a size of 299 by 299 pixels. Ordoñez et al. (2020), using the 
same set of images, built a CNN with images resized to 224 by 224 pixels, the default input of the VGG-19 model. 
Higher resolution images offer the flexibility to adapt the model in the future to more detailed and complex image 
analysis tasks, potentially improving the accuracy and effectiveness of image recognition capabilities. 
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laboratory, immersed in water and placed under a stereomicroscope on a white background with 
transmitted light. However, it is important to note that even if results indicate that breaking and 
baking is not necessary for age determination using AI, a subsample chosen for the Label and 
Enrich phases would have to be fully processed for age determination with traditional methods 
by an expert reader. 

Presorting otoliths 
The adopted procedure excludes broken otoliths, applying manual presorting at the image-taking 
stage. Presorting has also occurred at the collection stage when crystalized otoliths10 are omitted 
when collecting samples. 

Image collection 
The image collection is associated with labels storing: 

1. Otolith reference number – using referencing system already in place; 
2. Image name and location – exact path for image access; 
3. Resolved age – human reader derived age (rsvage); 
4. Year collected – to account for variation between cohorts and prevalent environmental 

conditions; 
5. Date collected – to account for the ‘edge effect’ reflecting seasonal changes; 
6. Geospatial characteristics (latitude and longitude) – to capture regional variation; 
7. Resolved sex – to determine whether otolith characteristics (possibly not directly visible 

to human eye) could be used for sex determination.11 

PRELIMINARY RESULTS 

The current model run utilized 2,682 images of otoliths collected during the 2019 IPHC fishery-
independent setline survey (FISS). The 2019 FISS provides an ideal foundation for creating an 
image database, as its extensive coverage is expected to capture regional variations in otoliths, 
offering a robust dataset for initial modeling efforts. 

The images were divided into training, validation, and test datasets. The training set (1,595) was 
used for training purposes. The validation set (282) was used to evaluate the model during the 
training process, allowing for adjustments without using the test set, which was reserved for the 
final evaluation. The test dataset (30%, 805) was used to assess the performance of the model 
after training, providing an unbiased evaluation of its generalization capability to new, unseen 
data. Additional set of 91 images (referred to as secondary test set) was used to compare the 
results between different model configurations. All images were resized to 400x400 pixels. 
Images of broken otoliths were excluded. The number of epochs was set to 1000, with 
EarlyStopping applied and patience set to 100. Learning rate was set to 0.0002 and batch size 
to 16.  

Normalized age MSE in training set was 0.000198 and 0.0015 in validation set. The model was 
trained for 417 epochs (i.e., 317 effective epochs with patience=100). The model achieved 
RMSE in the test set of 1.90, and 1.94 when applied to rounded results. Correct age was 

 
10 Crystalized otoliths have an altered composition – specifically, where the aragonite in the otolith is partially or 
mostly replaced by vaterite, a phenomenon known as otolith crystallization. Crystallized otoliths are not suitable for 
ageing. 
11 IPHC is currently using genotyping for Pacific halibut sex determination. 
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predicted for 30.3% individuals, with an additional 40.7% being within 1 year of error. Figure 3 
shows accuracy adjustment over the training process, while Figure 4 compares manually-
derived age with AI predicted age. Figure 5 compares age composition derived manually with 
model predictions. 

  

Figure 3: Age accuracy (measured as normalized age MSE) throughout the training process. 

  

Figure 4: Comparison between manually derived age with AI predicted age. 



IPHC-2025-AM101-INF03 

Page 8 of 12 

 

Figure 5: Comparison between manually derived age with AI predicted age – age composition. 

CONCLUSIONS 

In conclusion, the ongoing advancement of AI technologies in the field of marine science offers 
considerable potential to enhance the efficiency of age determination of Pacific halibut using 
otolith images. Preliminary results presented here suggest that AI could serve as a promising 
alternative to the current ageing protocol, which relies entirely on manual age reading. AI is also 
evolving rapidly, and adapting to new developments may further improve results over time 
However, it is important to continue verifying whether achieved accuracy of CNN-based 
predictions do not learn biased prediction rules based on changes in the relationship between 
age and covariates used by the model, noise or other irrelevant imaging artefacts present in the 
data (Ordoñez et al., 2020). Therefore, it is key to continuously diagnose performance problems 
and find ways to fix them (Belcher et al., 2023; Norouzzadeh et al., 2018). Moreover, the 
automated ageing process will still depend on trained readers for training the model with inputs 
that capture temporal changes, which is increasingly important in the face of changing 
environmental conditions and climate change. 

RECOMMENDATION 

That the Commission: 

1) NOTE paper IPHC-2025-AM101-INF03 that summarizes the information available on the 
use of artificial intelligence (AI) for determining the age of fish from images of collected 
otoliths and provides an update on the exploratory work of implementing an AI-based age 
determination model for Pacific halibut. 
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APPENDIX 
COUNTS OF OTOLITHS AGED BY THE IPHC 

Collection 
year 

Ageing 
method IPHC FISS* 

Commercial 
(Market 

Sample)* 
NOAA Trawl 

survey* 
Tag 

recovery* 
ADF&G 

recreational* 
Clean 

collection 
pre-1960 surface 70,984     10,068     

1960 surface 6,606     681     

1961 surface 4,727   4,576 842     

1962 surface 2,605   1,692 594     

1963 surface 8,257   2,209 440     

1964 surface 10,295 27,828 1,001 353     

1965 surface 5,169 27,252 1,186 493     

1966 surface 3,750 24,638 1,777 796     

1967 surface 6,325 29,797 2,271 1,151     

1968 surface 2,314 29,772 1,887 1,813     

1969 surface 1,510 23,361 1,019 1,869     

1970 surface 1,138 24,686 1,184 867     

1971 surface 2,702 16,374 2,294 732     

1972 surface 2,597 23,381 1,180 490     

1973 surface 1,747 16,683 893 244     

1974 surface 1,021 11,569 1,189 128     

1975 surface 1,212 14,128 1,136 131     

1976 surface 1,843 14,103 969 72     

1977 surface 1,853 13,514 1,102 83     

1978 surface 1,933 11,434 1,309 61     

1979 surface 2,021 7,219 730 93     

1980 surface 5,022 10,317 717 168     

1981 surface 7,942 8,267 460 129     

1982 surface 5,720 9,644 443 208     

1983 surface 5,822 9,262 1,355 286     

1984 surface 6,508 10,233 1,089 455     

1985 surface 5,872 12,986 1,192 778     

1986 surface 5,139 12,426 1,120 1,020     

1987 surface 42 16,137   859     

1988 surface 1,179 17,154 98 761     

1989 surface 6,130 14,122   710     

1990 surface 2,201 14,800 4,802 397     

1991 surface 1,315 13,461 2,598 280     

1992 surface/BB 7,530 14,564 222 182     

1993 surface/BB 3,384 13,747   147     

1994 surface/BB 2,618 13,311   99     

1995 surface/BB 4,512 12,297 433       

1996 surface/BB 10,893 13,452 2,211       

1997 surface/BB 14,784 15,501 834 148     



IPHC-2025-AM101-INF03 

Page 12 of 12 

1998 surface/BB 8,587 14,395 1,145 98     

1999 surface/BB 11,971 12,858 3,029 70 3,672   

2000 surface/BB 14,122 13,982 1,209 46 2,706   

2001 surface/BB 14,731 13,181 2,952 27 2,609   

2002 BB 13,635 17,932 761 24 2,349   

2003 BB 12,626 13,915 3,876 79 2,754   

2004 BB 14,474 11,798 897 450 3,288   

2005 BB 12,651 14,650 2,028 643 3,183   

2006 BB 14,976 13,399 2,621 679 3,179   

2007 BB 16,285 13,964 3,930 455 3,026   

2008 BB 15,545 13,460 1,527 304 1,500    

2009 BB 15,706 13,583 4,922  276 1,500    

2010 BB 14,080 16,106 1,915  21 1,500  625 

2011 BB 14,451 11,391 4,592  26 1,500  676 

2012 BB 17,896 12,902 1,639  9 1,500  1164 

2013 BB 12,717 11,039 2,044  19 1,503  1020 

2014 BB 16,194 12,606 1,476  22 1,500  1096 

2015 BB 15,815 12,312 2,133  24 1,500  1072 

2016 BB 15,113 11,618 742  21 1,502  902 

2017 BB 12,565 10,821 1,384  15 1,500  756 

2018 BB 12,935 11,013 576  39 1,499  798 

2019 BB 17,716 10,711 1,640  34 1,497  925 

2020 BB 10,323 10,568  34 1,413  577 

2021 BB 12,253 11,051 1,444 38 1,500  547 

2022 BB 9,702 10,942 1,902  39 2,334  519 

2023 BB 8,506 10,968 (3,147) (48) (1,958) 462 

2024 BB 5,771 (10,377) (1,058) (61) (1,542) 458 
Notes: 

• Star (*) indicates blind side otolith. 
• BB stands for ‘break and bake’ approach. 
• All otoliths reported in this table were aged with the exception of the clean collection. 
• All aged otoliths are stored in glycerol/thymol solution. 
• Some small fish from trawl survey collection are still aged by surface method; otoliths with surface age>4 are broken 

and baked. 
• Sample data not entered prior to 1960 for FISS, 1964 for commercial, 1961 for NOAA trawl survey. 
• Clean collection is not aged, stored dry, and include paired otoliths. 
• Tribal otoliths are included in the Market Sample series. 
• Additionally, there are 144 not aged 2A recreational otoliths, all from Hein Bank collected between 2004 and 2009. 
• Trawl and recreational otoliths lag one year in ageing. 
• In brackets, otoliths available for ageing but ageing not completed. 
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