

INTERNATIONAL PACIFIC

HALIBUT COMMISSION Celebrating 100 Years 1924-2024

Report on current and future biological and ecosystem science research activities

Agenda item: 4.1.3 IPHC-2023-SRB023-08 (J. Planas, C. Dykstra, A. Jasonowicz, C. Jones)

Biological and Ecosystem Science Research

5 Yr – Program of Integrated Research and Monitoring (2022-2026)

Research Areas:

- Migration and Population Dynamics
 - Reproduction
 - Growth
 - Mortality and Survival Assessment
 - Fishing Technology

Research activity priorization

Research areas	Research activities	Research outcomes	Relevance for stock assessment	Relevance for MSE	Specific analysis input	SA Rank	MSE Rank	Research priorization
	Population structure	Population structure in the Convention Area	Altered structure of future stock assessments		If 4B is found to be functionally isolated, a separate assessment may be constructed for that IPHC Regulatory Area	2. Biological input	1. Biological parameterization and	2
Migration and population dynamics	Distribution	Assignment of individuals to source populations and assessment of distribution changes	Improve estimates of productivity	Improve parametization of the Operating Model	Will be used to define management targets for minimum spawning biomass by Biological Region	3. Biological input	validation of movement estimates and recruitment distribution	2
	Larval and juvenile connectivity studies	Improved understanding of larval and juvenile distribution	Improve estimates of productivity		Will be used to generate potential recruitment covariates and to inform minimum spawning biomass targets by Biological Region	3. Biological input	 Biological parameterization and validation of movement estimates 	2
	Histological maturity assessment	Updated maturity schedule			Will be included in the stock assessment, replacing the current schedule last updated in 2006			1
	Examination of potential skip spawning	pawning	Improve simulation of	Will be used to adjust the asymptote of the maturity schedule, if/when a time-series is available this will be used as a direct input to the stock assessment		2. Biological parameterization and	1	
Reproduction	Fecundity assessment	Fecundity-at-age and -size information	reference point estimates	spawning biomass in the Operating Model	Will be used to move from spawning biomass to egg-output as the metric of reproductive capability in the stock assessment and management reference points	1. Biological input	validation of recruitment variability and distribution	1
	Examination of accuracy of current field macroscopic maturity classification	Revised field maturity classification			Revised time-series of historical (and future) maturity for input to the stock assessment			1
		Identification and application of markers for growth pattern evaluation	Scale stock productivity and reference point estimates	scenarios investigating climate change	May inform yield-per-recruit and other spatial evaluations of productivity that support mortality limit-setting		3. Biological parameterization and validation for growth projections	5
Growth	Evaluation of somatic growth variation as a driver for changes in size-at-age	Environmental influences on growth patterns			May provide covariates for projecting short-term size-at-age. May help to delineate between effects due to fishing and those due to environment, thereby informing appropriate management response			5
		Dietary influences on growth patterns and physiological condition			May provide covariates for projecting short-term size-at-age. May help to deleineate between effects due to fishing and those due to environment, thereby informing appropriate management response	-		5
	Discard mortality rate estimate: longline fishery	Experimentally-derived			Will improve estimates of discard mortality, reducing potential bias in stock assessment results and management of mortality limits	1. Fishery yield		4
Mortality and survival assessment	Discard mortality rate estimate: recreational fishery	DMR	Improve trends in unobserved mortality	Improve estimates of stock productivity	prove estimates of Will improve estimates of discard mortality, reducing potential bias in stock		1. Fishery parameterization	4
	Best handling and release practices	Guidelines for reducing discard mortality			May reduce discard mortality, thereby increasing available yield for directed fisheries	2. Fishery yield		4
Fishing technology	Whale depredation accounting and tools for avoidance	New tools for fishery avoidance/deterence; improved estimation of depredation mortality	Improve mortality accounting	Improve estimates of stock productivity	May reduce depredation mortality, thereby increasing available yield for directed fisheries. May also be included as another explicit source of mortality in the stock assessment and mortality limit setting process depending on the estimated magnitude	1. Assessment data collection and processing		3
Fishing technology	Bycatch reduction	Development of methods for reducing bycatch and better estimate mortality	Improve mortality accounting	Improve estimates of stock productivity	May reduce depredation mortality, thereby increasing available yield for directed fisheries. May also be included as another explicit source of mortality in the stock assessment and mortality limit setting process depending on the estimated magnitude	1. Assessment data collection and processing		3

INTERNATIONAL PACIFI HALIBUT COMMISSION

2024

100 years

1924

Research activity priorization

Research areas	Research activities	Research outcomes	Relevance for stock assessment	Relevance for MSE	Specific analysis input	SA Rank	MSE Rank	Research priorization
	Population structure	Population structure in the Convention Area	Altered structure of future stock assessments		If 4B is found to be functionally isolated, a separate assessment may be constructed for that IPHC Regulatory Area	2. Biological input	1. Biological parameterization and	2
Migration and population dynamics	Distribution	Assignment of individuals to source populations and assessment of distribution changes	Improve estimates of productivity	Improve parametization of the Operating Model	Will be used to define management targets for minimum spawning biomass by Biological Region	3. Biological input		2
	Larval and juvenile connectivity studies	Improved understanding of larval and juvenile distribution	Improve estimates of productivity		Will be used to generate potential recruitment covariates and to inform minimum spawning biomass targets by Biological Region	3. Biological input	 Biological parameterization and validation of movement estimates 	2
	Histological maturity assessment	Updated maturity schedule	Scale biomass and reference point estimates		Will be included in the SA, replacing the current schedule last updated in 2006		2. Biological parameterization and validation of recruitment variability and distribution	1
	Fecundity assessment	Fecundity-at-age and -size information		Improve simulation of	Will be used to move from spawning biomass to egg- output as the metric of reproductive capability in the SA and management reference points			1
Reproduction	Examination of accuracy of current field macroscopic maturity classification	Revised field maturity classification		spawning biomass in the Operating Model	Revised time-series of historical (and future) maturity for input to the SA	1. Biological input		1
	Examination of potential skip spawning	Incidence of skip spawning			Will be used to adjust the asymptote of the maturity schedule, if/when a time-series is available this will be used as a direct input to the SA			1

Top research priorities for stock assessment

SA Rank	Research outcomes	Relevance for stock assessment	Specific analysis input	Research Area	Research activities	
	Updated maturity schedule		Will be included in the stock assessment, replacing the current schedule last updated in 2006		Histological maturity assessment	
	Incidence of skip spawning	Scale biomass and	Will be used to adjust the asymptote of the maturity schedule, if/when a time-series is available this will be used as a direct input to the stock assessment		Examination of potential skip spawning	
1. Biological input	Fecundity-at-age and -size information	reference point estimates	Will be used to move from spawning biomass to egg-output as the metric of reproductive capability in the stock assessment and management reference points	Reproduction	Fecundity assessment	
	Revised field maturity classification		Revised time-series of historical (and future) maturity for input to the stock assessment		Examination of accuracy of current field macroscopic maturity classification	
2. Biological input	Stock structure of IPHC Regulatory Area 4B relative to the rest of the Convention Area	Altered structure of future stock assessments	If 4B is found to be functionally isolated, a separate assessment may be constructed for that IPHC Regulatory Area		Population structure	
3. Biological input	Assignment of individuals to source populations and assessment of distribution changes	Improve estimates of productivity	Will be used to define management targets for minimum spawning biomass by Biological Region	Migration and population dynamics	Distribution	
	Improved understanding of larval and juvenile distribution	productivity	Will be used to generate potential recruitment covariates and to inform minimum spawning biomass targets by Biological Region		Larval and juvenile connectivity studies	
1. Assessment data	Sex ratio-at-age	Scale biomass and	Annual sex-ratio at age for the commercial fishery fit by the stock assessment		Sex ratio of current commercial landings	
collection and processing	Historical sex ratio-at-age	fishing intensity	Annual sex-ratio at age for the commercial fishery fit by the stock assessment	Reproduction	Historical sex ratios based on archived otolith DNA analyses	
2. Assessment data collection and processing	New tools for fishery avoidance/deterence; improved estimation of depredation mortality	Improve mortality accounting	May reduce depredation mortality, thereby increasing available yield for directed fisheries. May also be included as another explicit source of mortality in the stock assessment and mortality limit setting process depending on the estimated magnitude	Fishing technology	Whale depredation accounting and tools for avoidance	
1. Fishery yield	Physiological and behavioral responses to fishing gear	Reduce incidental mortality	May increase yield available to directed fisheries	Fishing technology	Biological interactions with fishing gear	
2. Fishery yield	Guidelines for reducing discard mortality	Improve estimates of unobserved mortality	May reduce discard mortality, thereby increasing available yield for directed fisheries	Mortality and survival assessment	Best handling practices: recreational fishery	

100 years

Top research priorities for MSE

MSE Rank	Research outcomes	Relevance for MSE	Research Area	Research activities	
1. Biological parameterization and	Improved understanding of larval and juvenile distribution	Improve parametization of the		Larval and juvenile connectivity studies	
validation of movement estimates	Stock structure of IPHC Regulatory Area 4B relative to the rest of the Convention Area	Operating Model	Migration and population	Population structure	
2. Biological parameterization and validation of recruitment variability	Assignment of individuals to source populations and assessment of distribution changes	Improve simulation of recruitment variability and parametization of recruitment distribution in the Operating Model	dynamics	Distribution	
and distribution	Establishment of temporal and spatial maturity and spawning patterns	Improve simulation of recruitment variability and parametization of recruitment distribution in the Operating Model	Reproduction	Recruitment strength and variability	
	Identification and application of markers for growth pattern evaluation				
3. Biological parameterization and validation for growth projections	Environmental influences on growth patterns	Improve simulation of variability and allow for scenarios investigating climate change	Growth	Evaluation of somatic growth variation as a driver for changes in size-at-age	
	Dietary influences on growth patterns and physiological condition				
1. Fishery parameterization	Experimentally-derived DMRs	Improve estimates of stock productivity	Mortality and survival assessment	Discard mortality rate estimate: recreational fishery	

Key research outputs informing management

Research Outputs

	Reduce uncertainty in spatial dynamics Changes in assessment structure	Migration and Population Dynamics: • Larval/juvenile movement • Stock structure/population assignments • Adult distribution	Parameterization of movement and
Stock Assessment	Scale biomass and reference point estimates	Reproduction: • Sex ratios • Maturity/Fecundity	<i>recruitment distribution</i> <i>in the OM</i> MSE
	Mortality estimates (observed and unobserved)	Mortality and Survival Assessment/Fishing Technology: • Discard mortality rates • Depredation reduction • Response to fishing gear	Stock productivity estimates

- Substrate information: usSeabed database.
- B.C. substrate layer 100-m resolution – provided by Dr. Dana Haggarty (DFO).
- Next step: bathymetry layer.

5-Yr Research Plan (2017-2021)

HALIBUT COMMISSION

100 years

PIRM 2022-2026

Population Genomics

Objective: to resolve the genetic structure of the Pacific halibut stock in IPHC Convention Waters

NPRB Project 2110 (2022-2024)

- Low-coverage whole-genome resequencing (lcWGR)
- Allows for screening genomic variation at very high resolution
- Establish Genetic Baseline
- Identify potential local and/or environmental adaptations.
 - 570 individuals (~ 50/collection)
 - 3 sequencing runs Illumina NovaSeq S4
 - Mean coverage 3.5x
 - 10,230,908 autosomal SNPs
 - 4,725,899 (minor allele frequency ≥ 0.05)

Pacific Halibut Reference Genome

- Version 2 March 2022 (<u>NCBI RefSeq:</u> <u>GCF 022539355.2</u>)
- 602.2 Mbp (24 chromosomes)
- Fully Annotated (27,944 genes)
 - Provide genetic basis for life-history traits (e.g., growth, maturity, migratory behavior, etc.).
- Large(12 Mbp) sex-associated region on Chr09

H. stenolepis

H. hippoglossus

Bioinformatic Workflow

Figure 1. Proposed bioinformatic workflow for the interrogation of low-coverage whole-genome sequence data. This diagram tracks the flow of data through the main stages of this project:

(A) raw sequence read processing,(B) alignment summaries,(C) analysis of population structure,(D) genomic analyses,(E) quality control steps to be taken.

Bioinformatic Workflow

Figure 1. Proposed bioinformatic workflow for the interrogation of low-coverage whole-genome sequence data. This diagram tracks the flow of data through the main stages of this project:

(A) raw sequence read processing,(B) alignment summaries,(C) analysis of population structure,

- (D) genomic analyses,
- (E) quality control steps to be taken.

Additions since SRB022

SRB022–Rec.11 (c) – summary measures of genetic diversity SRB022–Rec.20 (b) – population assignment testing

SRB022–Rec.11 (para. 37) The SRB **RECOMMENDED** that the Secretariat include other genome-wide summary measures of diversity. Measures could include (a) measures of *genome size, (b) percentages of genome as* singleton and duplicated loci, (c) other summary measures of diversity including (i) number of loci with minor allele frequency (MAF)>0.01, (ii) number of loci with MAF>0.05, (iii) a measure of deviation observed and of expected *heterozygosity (Fis), (iv) observed heterozygosity* (Ho) and expected heterozygosity (He).

Table 1. Summary of diversity measures estimated from low coverage whole genome sequence data for sample collections of Pacific halibut. The table includes sample sizes (N), number of loci with minor allele frequency (MAF)>0.01, number of loci with MAF>0.05.

Area	Collection Year	Ν	MAF > 0.01	MAF > 0.05	F _{IS}	Н _о	H _E
British Columbia	1999	49	8,958,267	4,890,386	0.109	0.154	0.158
	2004	43	8,756,199	4,995,125	0.115	0.156	0.163
	2007	50	8,939,078	4,900,656	0.120	0.154	0.157
	all years	142	9,256,496	4,762,476	0.023	0.155	0.161
Central Gulf of	1999	50	9,131,547	4,993,279	0.049	0.158	0.171
Alaska	2004	50	9,065,567	5,163,204	0.029	0.162	0.189
	2007	50	9,052,210	5,052,609	0.058	0.159	0.176
	2018	49	8,627,118	4,893,881	0.172	0.153	0.153
	all years	199	9,561,613	4,862,986	-0.032	0.158	0.176
Bering Sea	2004	43	8,886,235	5,007,451	0.094	0.156	0.164
	2007	50	9,057,451	4,930,166	0.089	0.155	0.162
	all years	93	9,214,470	4,851,360	0.030	0.156	0.164
Central Aleutian	2007	37	8,464,803	4,983,042	0.150	0.154	0.157
Islands	2020	49	8,823,846	4,904,749	0.129	0.154	0.158
	all years	86	8,921,876	4,799,261	0.066	0.154	0.159
Western Aleutian	2020	50	8,690,974	4,893,669	0.151	0.153	0.157
Islands	all years	50	8,690,974	4,893,669	0.151	0.153	0.157

PCA based analyses to address components of:

SRB022–Rec.13 (para. 39): SNP outlier detection & testing

SRB022–Rec.14 (para. 40): Establish statistical significance of outlier loci

SRB022–Rec.20 (para. 47): Unsupervised clustering

SRB022–Rec.20 (para. 47) The SRB **RECOMMENDED**:

- a) that the Secretariat move forward to stock discrimination to satisfy the Secretariat objective of using genetic data to define spatial structuring including unsupervised clustering methods (e.g. K-means, Structure, etc.) as well as PCA-based clustering (e.g. Discriminant Analysis of Principle Component) clustering;
- b) using assignment testing and mixture analyses such as leave-one-out cross validation simulations to assess the potential accuracy of mixed stock analysis (MSA).
 - PCA 4,725,899 autosomal SNPs
 - Retained top 3 PCs Cattell's Rule

- tested K=1:20
- compared fit for each K using total within-cluster sum of squares and Bayesian Information Criterion (BIC)

SRB022–Rec.13 (para. 39) **NOTING** that different outlier tests are based on different assumptions and statistical approaches, the SRB **RECOMMENDED** that the Secretariat implement more than one method. Selection of specific markers would appropriately be based on concordant designation of highly population discriminatory loci identify across methods. The Secretariat is likely to have greater confidence in assignment of 'outliers' based on principles of concordance using multiple and semi-independent software packages and statistical approaches.

SRB022–Rec.14 (para. 40) The SRB **RECOMMENDED** that after statistical significance of SNP loci has been established, the Secretariat use gene set enrichment analyses to establish functional annotations for genes associated with SNPs.

- PCA based selection scan
 - pcadapt test statistic implemented in PCAngsd (top 3 PCs)
 - robust Mahalnobis distance (χ^2 distribution with K (3) degrees of freedom)
- false discovery rate level 0.001 (Benjamini-Hochberg procedure)
- 16,272 candidate SNPs

Progress Update

Current Efforts (SRB022–Rec.13 & 14):

- Establish statistical significance for the F_{ST} based outlier scans
 Next (SRB022–Rec.20 a):
- Estimate individual admixture proportions NGSadmix

2. Reproduction

5-Yr Research Plan (2017-2021)

PIRM 2022-2026

INTERNATIONAL PACIFIC HALIBUT COMMISSION

2. Reproduction Microscopic maturity staging: histological oocyte stages

2. Reproduction FISS: ovarian sampling for histology-based maturity

100 years

2. Reproduction Maturity sample collection in FISS 2022/2023

	Number of samples							
Biological Region	2022	2023 (est.)	Total					
2	437	398	835					
3	348	705	1,053					
4	180	-	180					
4B	51	-	51					
Total	1,016	1,103	2,119					

2. Reproduction

Generating Maturity Ogives

- Logistic curve
 - GLM with binomial distribution (mature or immature) and logit link function
 - Length and age at 50% maturity calculated using dose.p function
 - Proportion of mature individuals (p) set to 0.5
- Length and age will be examined coastwide and among IPHC biological regions based on data available
- MARVLS R code repository: <u>https://github.com/MARVLS/Fish-Gonad-Staging/tree/main/analyses</u>

2. Reproduction Fecundity sample collection in FISS 2023

Biological Region 3

Total = 457

Mature (field) = 299

Ovary Weight (mature) = 255

2. Reproduction

Fecundity: autodiametric method

2. Reproduction

Fecundity: autodiametric method

Potential Annual Fecundity (PAF) (Total # oocytes)

3. Mortality and Survival Assessment

External funding: Saltonstall-Kennedy NOAA (2017-2020); NFWF (2019-2021); NPRB#2009 (2021-2022)

- Publications: Kroska et al. (2021) Conservation Physiology 9: coab001
 - Loher et al. (2022) North American Journal of Fisheries Management 42: 37-49
 - Dykstra et al. (2023) Submitted.

3. Mortality and Survival Assessment

Characterization of discards in the directed longline fishery

3. Mortality and Survival Assessment Characterization of discards in the directed longline fishery

Hook Release Methods: Viabilities and Injuries

Min. DMR = 4.2% (Loher et al. 2022)

Sustained Injury

Dykstra et al. (2023) Submitted

3. Mortality and Survival Assessment

Characterization of discards in the directed longline fishery

Stress Indicators in the Blood

Reducing whale depredation by protecting longline catches

Phase 1: International Workshop - 2022

Explore latest ideas in terminal gear modification and catch protection – an area previously identified as having the highest likelihood of 'breaking the reward cycle' in depredation.

- Refine attributes discussed into two viable approaches:
 - Enclosing shuttles.
 - Branchlines with shrouds.

Phase 2: Field testing of catch protection devices - 2023

Tested selected devices for:

- Deployment / Retrieval logistics.
- Optimal configurations (weighting, attachments).
- Basic performance (species/sizes).

Shuttle

Shroud

4. Fishing technology

Reducing whale depredation by protecting longline catches

Phase 2: Shuttle field testing

Preliminary conclusions

- Safely operational on a small vessel.
- Moderate learning curve to attach in-line during hauling event.
- Similar catch rates to standard gear.
- Groundline, gangion, hooks need refinement to minimize damage to fish.

4. Fishing technology

Reducing whale depredation by protecting longline catches

Phase 2: Shroud field testing

Preliminary conclusions

- Variable strength snaps allowed hooks to cluster.
- Shrouds generally slid down to cover the hooks, with some snarling.
- Low catch rates in final tested configuration small footprint, lots of hagfish.
- Basic concept works many logistical issues to sort out before scaling to fishery level.

4. Fishing technology

Reducing whale depredation by protecting longline catches

Phase 3a: Testing in presence of Orcas - 2024

Recently secured funding from NOAA BREP 2023 NA23NMF4720414

- Permit and vessel selection permitting:
 - 10 days of fishing in presence of Orcas.
 - Catch rate comparisons with and without shuttle device.
 - Further refinements (attachment protocols, gangion/hook strength).
 - Catch composition details (size ranges, species, catch volume).

Phase 3b: Testing in presence of Sperm whales

Pending funding

Pre-proposal for funding submitted to Saltonstall-Kennedy – awaiting response.

Summary of active research grants

Project #	Grant agency	Project name	PI	Partners	IPHC Budget (\$US)	Management implications	Grant period
1	Bycatch Reduction Engineering Program- NOAA	Gear-based approaches to catch protection as a means for minimizing whale depredation in longline fisheries (NOAA Award Number NA21NMF4720534)	IPHC	Deep Sea Fishermen's Union, Alaska Fisheries Science Center- NOAA, industry representatives	\$99,700	Mortality estimations	1 November 2021 – 31 October 2023
2	North Pacific Research Board	Pacific halibut population genomics (NPRB Award No. 2110)	IPHC	Alaska Fisheries Science Center- NOAA, Juneau, Seattle	\$193,685	Stock structure	1 December 2021 – 31 January 2024
		Total awarded (\$)		\$293,385			

INTERNATIONAL PACIFIC

