INTERNATIONAL PACIFIC HALIBUT COMMISSION

-

ESTABLISHED BY A CONVENTION BETWEEN CANADA AND THE UNITED STATES OF AMERICA

Scientific Report No. 64

Factors Affecting Longline Catch and Effort:

I. General Review

by

Bernard E. Skud

II. Hook-Spacing

by

John M. Hamley and Bernard E. Skud

III. Bait Loss and Competition

by

Bernard E. Skud

SEATTLE, WASHINGTON 1978 The International Pacific Halibut Commission has three publications: Annual Reports, Scientific Reports, and Technical Reports. Until 1969, only one series was published. The numbering of the original series has been continued with the Scientific Reports. ÷

Commissioners

NEILS M. EVENSFRANCIS W. MILLERDWILLIAM S. GILBERTROBERT W. SCHONINGCLIFFORD R. LEVELTONPETER C. WALLIN

Director

Bernard Einar Skud

INTERNATIONAL PACIFIC HALIBUT COMMISSION P.O. Box 5009, University Station Seattle, Washington 98105, U.S.A.

Contents

. .

÷

.

Abstract	4
Factors Affecting Longline Catch and Effort:	
I. General Review by Bernard E. Skud	6
Introduction Halibut Longline Gear Comparison of Pelagic and Demersal Gear Measures of Longline Effort	6 7 9 10
II. Hook-Spacing by John M. Hamley and Bernard E. Skud	15
Introduction Standardization of Effort Experimental Fishing Testing the Standards Effects of Saturation CPUE Standards for Halibut Size Selectivity Conclusions	16 16 18 19 19 20 22 24
III. Bait Loss and Competition by Bernard E. Skud	25
Introduction Collection of Data General Observations Saturation Catch and Soak-Time Catch with Depth Mean Weight and Depth Mean Weight and Depth Puget Sound Experiment Puget Sound Experiment Distribution of the Catch on the Gear Competition Estimates of CPUE Optimization of Fishing Techniques Discussion Conclusions	26 27 27 28 30 31 32 34 35 37 39 41 41 42
Acknowledgments	43
Literature Cited	44
Appendices	51

ABSTRACT

In 1931, the International Pacific Halibut Commission defined a unit of fishing effort as 1,800 feet of longline gear. This definition assumed that catch was proportional to length of groundline regardless of the number of hooks. In 1940, the catch was assumed proportional to the number of hooks regardless of the length of groundline, and the unit of effort was redefined as a 6-line skate with 120 hooks. This proportionality also had been accepted in other longline fisheries and in theoretical studies.

In the early 1970's, 14 experiments were conducted to test the standards of CPUE used in the halibut fishery. Longlines with different hook-spacings were fished at the same time on the same grounds and the results showed that catch was dependent on the spacing and that effort was not proportional to the number of hooks. A new unit of effort, 100 hooks of 18-foot gear, was defined and effort by other longline gear was adjusted to this standard by an empirically determined curvilinear relation between catch per hook and hook-spacing.

During 6 of the cruises, special studies were conducted in which each hook was observed as it was retrieved to determine whether a fish had been caught or the bait retained. Over 170,000 hooks were examined and the data were compared with depth of fishing, soak-time and hook-spacing. Bait loss during a normal set was between 60 and 70% and differed with depth and soak-time. The distribution of halibut on the gear was not random, however, most of the halibut were not clustered on adjacent hooks. Halibut were more successful than other species in competing for the baited hooks. Apparently, halibut also were responsible for much of the bait loss, stealing the baits without being caught. The effects of bait loss and the catch of other species on the CPUE of halibut is discussed.

Comparisons made with results from the tuna longline fishery indicate that the effects of hook-spacing, bait loss, etc., are similar and suggest that the same basic phenomena occur in longline fisheries in general.

Factors Affecting Longline Catch and Effort:

I. General Review

by

Bernard E. Skud

I. General Review

by

Bernard E. Skud

INTRODUCTION

The relative simplicity of hook and line gear has contributed to the impression that the hook is an uncomplicated measure of fishing effort. This concept also is engendered by comparison with mobile gear such as trawls and purse seines; Allen (1963) and Gulland (1969) concluded that modifications in vessels or gear were more likely to change the fishing power of mobile gear than that of stationary gear such as traps and lines. A similar, but qualified, conclusion was echoed by Rothschild and Suda (1977): "The measurement of fishing effort in tuna fisheries involve the relatively simple (at least outwardly) problem of measuring fishing effort for a longline fishery and extremely complex problem of measuring fishing effort for a surface [purse seine] fishery". Intuitively, one accepts this difference between mobile and stationary gear and the significance of modifications in longline gear has often been neglected.

Most of the published works on longline gear concern pelagic fisheries, specifically the tunas (*Thunnus* spp.) in the Pacific, but the results of many of these papers are pertinent to demersal longline fisheries. These studies of pelagic gear, as well as theoretical papers on hook and line gear in general, will be reviewed along with the data from the fishery for Pacific halibut (*Hippoglossus stenolepis*).

In other demersal longline fisheries, most of the gear studies emphasized the relation of size selectivity to hook size or shape (Aasen 1965; Hamre 1968; McCracken 1963; Parrish 1963; Saetersdal 1963: and Forster 1973). Recognizing the need for experimental data on the size selectivity of hook and line gear. Clark (1960) and Pope (1966) suggested factors which should be considered in such research. Although not mutually exclusive, these factors fell into three categories: one concerned bait, its attractiveness and durability; a second, broadly classified as natural factors, included behavior and density of the target species, incidental catch of secondary species and environmental conditions; and the third category concerned fishing techniques and the gear itself: size, shape, and spacing of hooks, and the material and strength of the lines. These factors are as important to catch rates as they are to selectivity and my initial interest (Skud 1972) was directed toward the third classification, specifically the spacing of hooks as related to catch per unit of effort (CPUE), a subject that had received relatively little attention. In conjunction with the hook-spacing study, other factors affecting CPUE were considered, in particular, bait loss and competition between species for the baited hooks. The purpose in collecting these data was to learn more about the effectiveness of longline gear and its operation relative to the distribution of halibut, with the intent of evaluating and refining estimates of CPUE. The International Pacific Halibut Commission (IPHC), which is responsible for management of the fishery, has relied heavily on CPUE as an index of abundance.

The purposes of this introductory paper are (1) to discuss the general characteristics of longline gear using the halibut and tuna gear as examples of demersal

1

and pelagic longline fisheries, and (2) to provide an historic review of papers pertinent to the estimation of CPUE in longline fisheries.

For convenience and to avoid unnecessary repetition, the Abstracts, Acknowledgements, Literature Cited, and the Appendices for all 3 of the papers in this report have been combined.

HALIBUT LONGLINE GEAR

The gear, setting and hauling equipment, and deck arrangement for conventional longline gear used in the halibut fishery are depicted in Figure 1. The functional unit of halibut longline gear is called a "skate" and consists of groundline, gangions, and hooks. In the early years, a number of lines (each 300 feet) were spliced end to end to form the groundline. The number of lines varied considerably, but the 6-line skate (1,800 feet) eventually was adopted by most of the fishermen. Now, groundline is sold in 1,800-foot coils. Loops of light twine (beckets) are attached at regular intervals to the groundline. Short branch lines (gangions) 4 to 5 feet long are attached to the beckets and a hook is attached to the end of each gangion. The interval between hooks or "rig" of the gear has varied from 9 feet to as much as 42 feet. The most common rigs have been 9, 13, 18, 21, 24, and 26 feet, as these intervals facilitate baiting the hooks and coiling the lines. Until the 1920's, fishermen consistently spaced their hooks at 9-foot intervals. By 1930, most of the gear was rigged at 13-foot intervals and, by the late 1950's, the predominant rig was 18-foot gear. More recently, 21-, 24-, and 26-foot gear has been introduced into the fishery.

Several skates (4 to 12) are usually tied together and each string of skates constitutes a set. The number of skates per string depends on factors such as the size of the fishing ground and the likelihood of snagging on the bottom. Each end of the string is attached to an anchor and buoy line and marked at the surface with a buoy, flagpole, and flag. When fishing at night or in heavy fog, lights or radar reflectors are used on each flagpole to aid in locating the gear.

Most of the fishing is conducted in depths between 15 and 150 fathoms. The skates with baited hooks are set over a chute at the stern of the vessel. Depending upon the grounds, time of year, and bait used, most of the gear is in the water for 4 to 48 hours, but the average "soak" for each skate is about 12 hours. The gear is hauled on a power-driven wheel, the gurdy, controlled by a fisherman who lands the fish, clears snarled lines, and stops the gurdy if the gear is snagged or if other problems occur. On traditional longline vessels, another man coils the line after it passes the gurdy. The gear is then inspected for necessary repairs, baited, and recoiled in preparation for the next set. Baits used in the halibut fishery are either fresh or frozen and include herring, octopus, salmon, and "shack" or "gurdy" bait such as grey cod, sablefish, or other species caught incidentally on the halibut gear.

Snap-on gear was introduced into the halibut fishery about 20 years ago; it differs from traditional setline gear in that the branch lines (gangions) are attached to the groundline with metal snaps rather than being tied or spliced to the groundline. Further, the groundline used for snap-on gear is one continuous line that is simply stored on a drum after the gangions are removed, instead of being coiled. The method of attaching the hooks to the gangions is the same for snap-on and traditional gear. When snap-on gear is set, the hooks are baited and the gangions are attached to the groundline with snaps as it unwinds from the

Figure 1. Deck layout and fishing arrangement. (Drawings by Charles R. Hitz)

drum. Hook intervals can be changed with each set. When the gear is retrieved, the hooks are unsnapped and stored on racks as the groundline is rewound on the drum. The snap-on gear is most prevalent on small boats.

More detailed information on the gear, vessels and fishing grounds has been described by IPHC (1978).

COMPARISON OF PELAGIC AND DEMERSAL GEAR

Demersal halibut gear and pelagic longline gear differ in several respects. Full details on the pelagic gear used in the tuna fishery have been described by Shapiro (1950), Mann (1955), and others. The major differences between the two types of gear are position in the water column and the number of hooks per unit of gear (basket vs. skate). These differences are depicted in Figure 2. The lines from the baskets and skates are tied together and fished in "strings". Whereas, the tuna line from each basket is buoyed, only the end of the halibut strings are buoyed. The tuna gear employs 4 to 6 hooks per basket, the halibut gear will use 75 to 150 hooks per skate. Tuna gear can be classified in two general types, shallow and deep. Recent descriptions of Japanese gear in the western equatorial Pacific Ocean are used as an example to compare with halibut gear (Suzuki and Warashina, MS¹). However, the diversity of tuna gear is great and has changed substantially, for example, Maéda (1967) stated that as many as 11 hooks were used per basket in earlier years. Other dimensions such as length of line per basket and the length of the gangions have also changed.

Figure 2. Comparison of pelagic and demersal longline gear in the tuna and halibut fisheries. (1 meter =3.28 feet)

¹ Suzuki, Ziro, and Yuio Warashina (MS). The comparison of catches made by regular and deepfishing longline gear in the central and western equatorial Pacific Ocean. Translated by Tamio Otsu, Southwest Fisheries Center, Honolulu Laboratory, U.S. National Marine Fisheries Service. The technique of fishing has for the most part been developed by trial and error by fishermen attempting to obtain a maximum catch with a minimum of effort. Undoubtedly, the differences in the gear relate to the behavior of the species; tuna are pelagic species which swim rapidly, whereas halibut are demersal and usually swim quite slowly and frequently rest on the bottom.

The depth of the halibut gear is dependent on the bottom contour. One end of a string of gear may be at 50 fathoms and the other end at 150 fathoms, but the gear can be set at a relatively uniform depth. In contrast, tuna gear hangs as a series of catenaries. The gear is buoyed at both ends so that the hooks in the middle are always deeper than those at either end. The mid-depth of the gear is often set in relation to the temperature stratum that is most usually frequented by tuna. Another difference in the two fisheries is the length of soak; tuna gear is usually hauled within 6 or 7 hours, a much shorter soak, as indicated earlier, than the halibut gear.

The variation in hook-spacing of longline gear is considerable. For pelagic species such as mackerel (*Scomber japonicus*) and salmon (*Oncorhynchus* spp.), which often are densely schooled, hook-spacing may be as close as 5 to 6 feet (Scofield 1947 and Shepard et al. 1975). However, in pelagic fisheries for tuna, which are faster-moving and less densely schooled, hook intervals may be as great as 600 feet (Fridman 1969), but usually are between 80 and 200 feet (Hirayama 1969a; Maéda 1967). Because pelagic longline gear hangs as a catenary, hook-spacing is also dependent on depth. If the surface buoys are relatively close, the catenary will be deeper and the spacing between hooks less than gear with widely-spaced buoys and a shallow catenary.

The hook-spacing of gear for slower-moving, demersal fish is much less than for tuna gear. McCracken (1963) and Nedelec (1975) reported the use of 6-foot spacings (50 hooks per 50 fathom line) for cod (*Gadus morhua*) and haddock (*Melanogrammus aeglefinus*) in the Atlantic; whereas Alward (1932) reported 21-foot spacing for these species. Au (1972) reported variations from 4 to 54 feet for demersal fisheries in the South China Sea. In the North American halibut fishery, hook-spacing ranged from 5 to 15 feet in the Atlantic (McKenzie 1946) and, in the Pacific fishery, as previously mentioned, 18- to 24-foot spacings are now the most common. In Japan, the longline fishery for halibut prior to 1930 used hookspacings of 7, 9, or 12 feet; most halibut are now taken with bottom trawls (Tsuji 1974).

Other differences between pelagic and demersal longline gear, such as hook size, material of lines, bait, etc., are not pertinent to this study, but are documented in the papers previously cited.

MEASURES OF LONGLINE EFFORT

Thompson (1916) and Thompson, Dunlop, and Bell (1931) compared different measures of fishing effort for the halibut fishery: number and length of trips, number of dories, number of men, and amount of gear. A 6-line skate of gear (1,800 feet) was adopted as the standard unit of effort. Thompson and Bell (1934) concluded that no adjustment was necessary either for the number of hooks per skate or the hook-spacing.

Later, Bell (unpublished circa 1940) analyzed the differences in catch between skates with 120 hooks (13-foot spacing) and those with approximately 80 hooks

1

(18-foot spacing). He concluded that effort was proportional to the number of hooks and the basic unit of effort was redefined in 1943 as a 6-line skate of 13-foot gear with 120 hooks. Although reported as catch per skate, this measure essentially was the catch per 120 hooks. Gear with fewer hooks were adjusted to this "standard skate", which was utilized until 1972. The subsequent revision, based on hook-spacing (Skud 1972), is discussed later in this section.

Tuna fisheries that utilize poles and nets, rather than longlines, usually rely on measures of effort such as catch per day, catch per set, etc. (Pella and Psaropulos 1975). Although similar measures such as catch per basket or per vessel-day have been used in the tuna longline fishery, the hook generally has been accepted as the preferred unit of effort. The earliest record I have located for CPUE in the tuna longline fishery was from the early 1930's (Nakamura 1952). He presented data on the catch per 100 hooks for the tuna fishery in the western Pacific. His measure of effort was in basic agreement with Bell's conclusion, as it implied that effort was proportional to the number of hooks. Apparently, the specific use of the hook as a measure of effort occurred earlier in the tuna fishery and in other demersal fisheries than it did in the halibut fishery.

With qualifications and refinements, this relation of number of hooks to effort was accepted in theoretical studies of hook and line gear. Gulland (1955) and Beverton and Holt (1957) assumed that fishing power of longline gear was proportional to the number of unoccupied hooks and presented catch equations to correct for gear saturation. Ricker (1958) emphasized that the efficiency of the gear was reduced, not only by those hooks that caught fish, but by the loss of bait. Murphy (1960) extended the treatment of saturation and incorporated factors in the catch equation for the loss of bait and loss of hooked fish. Ionas (1966), Fridman (1969), and Gulland (1969) concluded that longline effort was increased simply by adding hooks and that the amount of effort could be expressed as the number of hooks multiplied by fishing time. The catch equation of Shepard et al. (1975) was essentially the same as Murphy's (1960).

Because the theoretical definitions did not include explicit reference to hookspacing or length of groundline, it is not possible to judge how the authors conceived the relationship of these factors to fishing effort. If the authors assumed a constant length of groundline (the practice in most longline fisheries), the definitions imply that catch per hook is independent of hook-spacing, because an increase in the number of hooks reduces the spacing between them. If hookspacing was considered constant, then the length of groundline would increase as hooks were added, but once a hook was occupied or lost its bait, the effective spacing between baited hooks would change and also would imply that catch per hook is independent of spacing.

Until recently, few authors questioned this measure of longline effort, however, Shomura and Murphy (1955), Murphy (1960), and Hirayama (1969a) presented data from tuna longline fisheries that cast doubts about the proportionality of effort to the number of hooks. Although the importance in relation to estimates of abundance was not specifically discussed in these papers, their data showed that catch per hook increased with increases in hook-spacing.

Thompson, Dunlop, and Bell (1931) had considered hook-spacing in their review of measures of effort in the halibut fishery and had concluded that no correction was necessary. Skud (1972) reported on experimental fishing with 4 different spacings and showed that catch per hook increased with spacing, i.e., that effort was not proportional to the number of hooks. As a result, the standard unit of effort was redefined (IPHC 1972). Subsequent studies on hook-spacing by IPHC are reported in this volume. Because of the foresight of Thompson, Dunlop, and Bell, data on the number of hooks per skate had been recorded as part of the vessels' fishing logs; this enabled IPHC to recalculate effort and CPUE from 1929 to date in accordance with the new standard (Myhre et al. 1977).

In the longline fishery for tuna, many of the references to the effects of hookspacing were indirect as the authors were concerned with the number of hooks per basket and, usually, their interest was directed towards improving the gear. Shomura and Murphy (1955) reported the results of a hook-spacing experiment in which the catch (number of tuna) was 0.262 per basket for 6-hook gear (wide spacing) and 0.316 for 11-hook gear (narrow spacing). They concluded that there was an advantage to adding hooks, although as previously indicated, the trend in the fishery had been towards reducing the number of hooks per basket. Murphy (1960) cited these results in reference to his modification of Gulland's (1955) catch equation. Murphy concluded that most of the increase on the 11-hook gear was the result of reducing localized saturation. He did not calculate the catch per hook and stated that if school size was constant, CPUE would not be distorted. I also reexamined Shomura and Murphy's (1955) data and calculated the catch per 100 hooks: 2.9 for the 11-hook gear and 4.4 for the 6-hook gear. Not only does this show an increase in the catch per hook with hook-spacing, but it also suggests that the gear probably was not saturated.

Maéda (1967) discussed the "thinning of hooks" and concluded that there were advantages in reducing the number of hooks per length of mainline. Hirayama (1969a) also was interested in improving the gear, but specifically examined the "hook rate" with intervals of spacing between approximately 100 and 200 feet. He noted the tendency for wider-spaced gear to catch more tuna per 100 hooks. But neither these authors, nor others, described the quantitative relation between spacing and CPUE. In most instances, I assume that detailed data on the number of hooks per basket were not available, however, authors attempting to assess the abundance of tuna usually did not mention the need for adjusting the data for differences in hook-spacing (Otsu and Sumida 1968; Wise and Fox 1969; Rothschild and Yong 1970; Shingu, Tomlinson and Peterson 1974; and others). Rothschild and Suda (1977) referred to factors affecting CPUE such as number of hooks per basket, but concluded that the long-term changes had not been great enough to warrant adjustments.

The interest in hook-spacing in other fisheries, particularly for groundfish, has also been relatively recent. Several of these papers have been presented as unpublished documents at the Annual Meeting of the International Council for the Exploration of the Sea (ICES). These include reports from Working Groups of the Gear and Behavior Committee that provide instructions for collecting and analyzing pertinent data. For example, Karlsen (1977) examined factors such as gangion length, bait size, hook type as well as hook-spacing in a Norwegian longline fishery. In one of his experiments, he compared CPUE with increases in hook-spacing of 35, 50 and 100%. The corresponding catch per line decreased 16.8, 18.6 and 29%; whereas the catch per hook increased 11, 22, and 42%. These results also indicate that effort is not proportional to the number of hooks. Karlsen also experimented with hook-spacing increases of 200 and 300% and concluded that at low catch rates, the gain in CPUE with hook-spacing is greater than at high catch rates.

Murphy and Elliot (1954) were among the first to express an interest in other

factors influencing the catch, in particular, schooling and the resultant distribution of catch on the longline gear. Maéda (1960) also studied schooling and made an extensive analysis of the distribution pattern of the catches in relation to depth and soak-time. As previously mentioned, Ricker (1958) stated that the bait loss reduced the efficiency of longline gear and Murphy's (1960) catch equation specifically accounted for the loss of baits. Other authors also examined the effect of bait loss, for example Shepard et al. (1975) in an experimental longline fishery for salmon. This interest was followed by studies of the causes of bait loss and the relation to fish behavior. For example, Yamaguchi and Kobayashi (1973 and 1974) studied the "breaking-strength" of baits and the number of baits in the stomachs of hooked fish. Regarding bait loss and behavior. Fernø, Tilseth, and Solemdal (ICES Document)¹ described the activities of whiting (Gadus merlangus) that were observed with underwater TV. The fish often took the bait in their mouth without being hooked. Small hooks caught more fish than large hooks, but even with the small hooks only 10% of the attacks on the bait ("rushes and jerks") resulted in the capture of a fish.

Many other factors that affect CPUE have been studied and it is not practical to cite all the publications, but several are pertinent to IPHC's studies and merit attention. Kurogane (1968) compared the catch of bottomfish with hook size, bait type and size, as well as with hook-spacing. Hirayama's (1969a-d and 1972) extensive studies on the "fishing mechanism" included quantitative analyses of factors such as bait loss, soak-time, and methods of retrieving the gear. Sivasubramaniam (1961) also studied the relation of catch of tunas to soak-time. The results pertinent to our studies are discussed in the subsequent reports.

These attempts to refine estimates of CPUE of longline gear are basically related to adjustments for competition between species, because the fishing power for the target species is reduced by factors such as bait loss and the capture of other species. This general relationship was noted by Rothschild (1977). Gulland (1955) and Beverton and Holt (1957) made reference to the effects of competition in conjunction with general descriptions of trawl and longline fisheries. Ketchen (1964) specifically addressed the subject of competition in the British Columbia trawl fishery for petrale sole (*Eopsetta jordani*). Gulland (1964) also discussed the problem in the demersal fisheries in the Barents Sea. Specific attention to competition in pelagic longline fisheries was considered by Murphy (1960). Rothschild (1967) presented a model describing the effects of competition in a tuna longline fishery and his model was extended by Ricker (1975) to include baits that were removed (stolen) without the fish being captured.

An interesting correlative to the studies of longline gear occurred in the evaluation of other stationary gear such as traps and nets. Nearly 50 years ago, Hile and Duden (1933) began a study in the Great Lakes to determine the effectiveness of different types of gear, in particular gillnets and traps. They distinguished between "fishing effort" which measured the units of gear and "fishing intensity", the product of effort and time. Van Oosten (1935) used these data to show that the catch from lifts every 2 days were not double those lifted daily. Similarly, Kennedy (1951) showed that the catch in gillnets did not increase as expected with time. Ricker (1958) summarized these findings: "Thus the catch per unit time, for many kinds of gear, tends to decrease from the time they are set

¹ Fernø, A., S. Tilseth, and P. Solemdal. The behavior of whiting (*Gadus merlangus*) in relation to long lines. International Council for the Exploration of the Sea, Gear and Behavior Committee, Document C.N. 1977/B:44, 11 p.

to the time they are lifted, and the speed of this decrease is partly a function of the abundance".

Papers related to the gear efficiency of pots and nets appeared sporadically during the subsequent years, but as with the studies of longline gear, there has been far greater emphasis on the evaluation of these gears in the past 5 to 10 years. Hamley (1975) reviewed some of these studies concerning gillnets, and Skud (in press) reviewed the studies of pots, particularly in the lobster fishery.

Clearly, there is a renewed interest in reevaluating the effective effort of stationary fishing gears. Although IPHC's interest was in response to a specific problem in the halibut fishery and the initial research was conducted independently of the knowledge of studies of the tuna fishery, the subsequent review of the literature has stimulated and influenced the analyses presented in the following reports. We hope our experience and results also will be useful to those continuing similar studies on other species.

Factors Affecting Longline Catch and Effort:

II. Hook-Spacing

by

John M. Hamley* and Bernard E. Skud

*Present address: J. M. Hamley, Nanticoke Fish Study, P.O. Box 429 Port Dover, Ontario, Canada NOA 1NO

II. Hook-Spacing

by John M. Hamley and Bernard E. Skud

INTRODUCTION

The importance of hook-spacing to the definition of longline effort is critical to the International Pacific Halibut Commission (IPHC) because the fishery for Pacific halibut (*Hippoglossus stenolepis*) has been managed largely on the basis of stock abundance as estimated by catch per unit of effort (CPUE). Although IPHC's measure of effort changed with time, little was published, except in the early years of the Commission, on the estimation of CPUE of halibut longline gear (Thompson et al. 1931; Thompson and Bell 1934). Before 1940, IPHC's standard unit of effort was a specified length of groundline; after 1940, the 120-hook standard was introduced. Over the years, fishermen have increased the spacing between hooks. Skud (1972) showed that catch per hook increased with hook-spacing and that the 120-hook standard underestimated fishing effort and overestimated fish abundance. The importance of hook-spacing probably was not detected in the earlier analyses because the differences in hook-spacing (9-12 feet and 12-18 feet) were small compared to those in the present-day fishery (12-26 feet).

To test the standards, IPHC conducted 14 experimental cruises on which longlines rigged to different hook-spacings were fished side by side. The results proved immediately important to management of the halibut fishery, and the initial findings were reported by Skud (1972) and IPHC (1972 and 1973). Skud (1975) also used this information to revise estimates of abundance prior to 1930.

In the present paper we will (1) show the theoretical relation between the three standards of longline effort that have been used to assess the condition of halibut stocks, (2) quantitatively evaluate the three standards, and (3) present additional evidence on the effect of hook-spacing on CPUE.

STANDARDIZATION OF EFFORT

During the past 50 years, three different standards have been used to measure longline effort in the fishery for halibut. Thompson et al. (1931) compared the efficiencies of 9- and 13-foot gear and concluded that a unit of longline gear (skate) "...corrected for length, may be used as a unit of effort without any consideration as to whether the hooks were 9 or 13 feet apart...". Thus, regardless of the number of hooks or the hook-spacing, 1,800 feet of groundline was adopted as the standard unit of fishing effort. Obviously, their conclusion only applied to the two spacings, but, in theory, this "length-standard" implied that, for a given abundance of halibut, *catch per skate is the same* at any hook-spacing. As the number of hooks per skate is inversely proportional to hook-spacing, the standard also implied that catch per hook increases in proportion to hookspacing (Figure 1).

Skud (1975) reexamined the original data used to establish the length-standard and found that the mean catch per skate of 9-foot gear was higher than that of 13-foot gear. Similarly, Bell (unpublished, circa 1940) found that the catch per skate of 13-foot gear (ca. 120 hooks) was more than that of 18-foot gear of the same length (ca. 80 hooks). Bell concluded that catch was proportional to the number of hooks and defined a new standard unit of effort based on the 13-foot gear. An 1,800-foot skate of 13-foot gear could hold 138 hooks (1,800 \pm 13), but in practice the number was less and varied considerably because of differences in rigging and type of groundline. The modal number, 120 hooks, was chosen as the standard and from 1943 to 1972, gear of different lengths and hook-spacings were adjusted to this standard according to the number of hooks. We will refer to this as the "hooks-standard". Minor adjustments were made to account for differences in the effectiveness of bait and for differences in the type of groundline because certain fibers stretch more than others.

Bell's hooks-standard showed that *catch per skate decreases as hook-spacing increases*, thereby refuting Thompson's length-standard. The hooks-standard was applied only to gear with less than 21-foot spacings, but, theoretically, it implied that *catch per hook is the same for all hook-spacings* (Figure 1). However, Skud (1972) demonstrated that the catch per hook increased with hook-spacing from 12 to 24 feet, thereby refuting the hooks-standard. As a result of Skud's findings and the subsequent hook-spacing experiments detailed in this paper, the standard unit of effort was redefined in 1973 as 100 hooks at 18-foot spacing and will be referred to as the "spacing-standard", which is intermediate to the other two (Figure 1). Gear with other hook-spacings are adjusted to this new standard, considering spacing, the number of hooks, and the length of groundline.¹ The relation of the three standards and the data and analyses used to establish the new standard are described below.

¹ The factors used to convert setline gear with other hook-spacings to the 100-hook, 18-foot standard skate were developed from commercial fishing data, as well as from the research cruises. Records from the commercial fishery, including log books from 1954 to 1972, were analyzed by sections of the coast. The resulting correction factors, per skate, are 9-foot gear (1.26); 13 (1.14); 18 (1.00); 21 (0.93); 24 (0.87); 26 (0.83); 36 (0.67); and 42 (0.60).

EXPERIMENTAL FISHING

The hook-spacing studies of 1971 (Skud 1972) are reviewed here along with more recent data gathered in 1972 and 1973. To determine the relation between CPUE and hook-spacing, commercial halibut vessels were chartered to fish conventional longline gear with different hook-spacings from 9 to 42 feet. Data also were available from two vessels on which observers recorded the results of fishing activities. In all, 14 trips were made at various locations along the coast from Oregon to the Bering Sea (Table 1).

Two to four different hook-spacings were used on each cruise. Fishing was conducted as a regular commercial operation with several skates tied end to end, except that the gear was set on a prescribed rotation, e.g., 9-, 13-, and 18-foot gear on the first day, 13-, 18-, and 9-foot gear on the second day and so forth. This rotation minimized biases caused by factors such as soak-time and the position of a skate in a string. During most trips, skates of each hook-spacing were set in separate strings parallel to strings of other hook-spacing. On two trips, skates with different hook-spacings were used alternately in the same string.

Over 4,000 skates with nearly 400,000 hooks were set. The total catch was over 300,000 pounds, about 14,000 halibut. The catch varied from very poor (less than 50 pounds per 100 hooks) in the Bering Sea and Goose Island, British Columbia, to very good (over 400 pounds per 100 hooks) in Queen Charlotte Sound, B.C. The catch per skate and catch per hook were calculated for each hook-spacing. The results are summarized below and in Appendix I, Tables 1 to 6.

Vessel	Location of Fishing	Date	Hook-spacing and Setting Pattern
		1971	
CHELSEA ¹	Albatross Bank, Shumagin Gully	5/5 to 27/5	13' and 21' skates, alternated in each string.
CHELSEA	Portlock Bank Seward Gully Portlock Bank	8/7 to 19/7 21/7 to 3/8 5/8 to 18/8	13', 18', 21' and 24' skates set in parallel strings.
AGNES-O ¹	Goose Island	24/8 to 30/8	13' and 18' skates mixed in each string.
		1972	
REPUBLIC	Bering Sea Shumagin Gully	9/3 to 28/3 28/3 to 4/4	13', 21' and 42' skates set in parallel strings.
SEAPAK	Goose Island Bonilla Island	8/6 to 21/6 24/6 to 2/7	9', 13' and 18' skates set in parallel strings.
CAPE BEALE	Masset Ramsay Island	15/8 to 26/8 28/8 to 5/9	9', 13' and 18' skates set in parallel strings.
ALASKA QUEEN II	Washington- Oregon Coast	2/10 to 15/10	18', 36' and 42' skates set in parallel strings.
		1973	
REPUBLIC	Queen Charlotte Sound	26/3 to 10/4 12/4 to 27/4	13', 21', 36' and 42' skates set in parallel strings.

		TT 1	•	
Table	1.	Hook-sp	acing	experiments.

¹ These two "observer" trips were regular commercial fishing trips, on which the captain controlled the operations and an IPHC employee recorded the results. All others were charter trips on which IPHC determined the hook-spacing and the manner of fishing. As expected, the data were extremely variable but, in general, catch per hook increased with hook-spacing, confirming the previous results (Skud 1972 and IPHC 1973). The abundance and distribution of halibut varied from trip to trip and from day to day within each trip, but the experiment was designed so that this would not bias the result: within each trip all gear types were fished at similar depths and soak-times, and within each day, the same bait or combination of baits was used on all skates. Nonetheless, unusual circumstances apparently caused systematic variation on some trips. For example, when dogfish (*Squalus acanthias*) were caught on almost all hooks on Trip 1 of the *Cape Beale*, the catch per hook of halibut was no greater for 18-foot than for 13-foot gear. Such variations in the experimental catch serve to emphasize that many variables are encountered in the commercial fishery and that caution is needed in interpreting CPUE.

During six of the cruises, certain days were designated for a special study: each hook was examined as the gear was retrieved, to determine whether a fish was caught or the bait retained. These hook-by-hook observations are described in Part III of this report.

We also reexamined the results of a bait study conducted by the Commission in 1965 (unpublished). In this study, four trips were made using 13- and 18-foot gear. The catch per hook of 18-foot gear was higher than that of 13-foot gear, for all bait types (Table 2). Although the results agree with the findings used to establish the spacing-standard, the gear was not fished systematically and the data have not been incorporated in the present analysis. (Note the differences in effectiveness of the baits.)

	13-Fo	oot Gear	18-Foot Gear		
Bait	Total Catch	Catch per Hook	Total Catch	Catch per Hook	
Herring	12,632	0.53	11,320	0.60	
Herring and Shack ¹	9,626	0.53	10,348	0.74	
Shack ¹	7,094	0.65	6,623	0.70	
Octopus	7,567	0.69	7,334	0.80	
Octopus and Herring	12,220	0.72	11,040	0.87	
Total	49,139		46,665		
Average		0.61		0.73	

Table 2. Halibut catch and catch per hook in pounds, by hook-spacing and bait, 1965.

¹ Fresh fish caught on halibut gear, usually cod and sablefish.

TESTING THE STANDARDS

Effects of Saturation

We assume throughout that CPUE for a given hook-spacing is proportional to halibut abundance. This is based on the premise that the abundance is so low relative to the number of hooks that the capture of one halibut usually does not preclude capture of another. Obviously, if abundance were so high that all hooks were occupied, the gear would be saturated and CPUE at its maximum (Figure 2). Our catch rates were very low: they ranged from 0.01 to 0.15 fish and the average was 0.05 fish per hook (Appendix I, Table 6). Halibut were occasionally taken on adjacent hooks, suggesting that a section of the gear could have been at or near saturation but, overall, the gear was far from saturation.

In most other studies (Beverton and Holt 1957; Gulland 1955 and 1969), fishing power of longlines has been considered proportional to the number of hooks, with the qualification that, when approaching saturation, CPUE does not increase in proportion to abundance (Figure 2). Murphy (1960) and Ionas (1966) also commented on saturation. Murphy discussed tuna longlines and concluded that the effect of saturation would be less at shorter hook-spacings, because the density of hooks is greater. In contrast, Ionas thought that hooks next to a captured fish might be ineffective; if that were the case, saturation could be greater at shorter hook-spacings. In our experience with halibut, hooked fish do not appear to inhibit captures on adjacent hooks, and Murphy's view seems more realistic.

ABUNDANCE

Figure 2. Relation of abundance to catch on longline gear.

CPUE Standards for Halibut

The difference in the catch per hook at different spacings is related to competition between hooks. If there is no "chumming" effect whereby a concentration of bait attracts halibut beyond their normal feeding ranges, the probability of any particular hook falling within the range of a halibut is not affected by the presence or absence of other hooks. If more than one hook falls within a halibut's range, these hooks "compete" for the capture of that fish, and the closer they are spaced, the lower is the catch per hook. On the other hand, if the hooks are so far apart that each halibut encounters no more than one hook, the hooks fish independently and their efficiency is at its maximum, so that the catch per hook no longer increases with hook-spacing.

The length-standard implies that the hooks compete; the hooks-standard, that the hooks fish independently. The spacing-standard allows for this whole range of possibilities (Figure 1). Hirayama (1969a), in a study of tuna longline gear, showed a similar relation that corresponds to our length- and hooks-standards, but he showed an abrupt transition between the two.

Both the length- and hooks-standards imply that, for a given abundance of halibut, the relation of catch per hook and hook-spacing can be represented by a straight line (Figure 1B). The length-standard specifies that this line goes through the origin (i.e., its intercept on the ordinate is zero); the hooks-standard specifies that this line is horizontal. The goodness of fit of the observations to each standard can be tested by calculating the ratio of the catch per 100 hooks of different hook-spacings to that of 18-foot gear on the same trip. The relation should approximate a straight line:

$$CPUE_h/CPUE_{18} = a + bh$$

where h is the distance between hooks. The intercept "a" equals zero if the lengthstandard is true, and the slope "b" equals zero if the hooks-standard is true. The catch per hook in pounds from the experimental fishing (Table 3) was fitted to a line by least squares, obtaining:

$$CPUE_{h}/CPUE_{18} = 0.693 + 0.0163h.$$

	Hook-Spacing in Feet							
Trip	9	12-13	18	21	24	36	42	
CHELSEA (Observer)	_	.782	_	.760	_	_		
CHELSEA								
Trip 1	_	.726	.744	.938	1.014			
Trip 2		.519	.742	.933	.909		_	
Trip 3	_	.579	1.028	.791	1.042			
AGNES-O (Observer)		1.440	1.631					
REPUBLIC (1972)								
Trip 1	_	.241		.443			.635	
Trip 2		1.501		2.415	_		3.017	
SEAPAK								
Trip 1	.264	.329	.231	_	_		_	
Trip 2	.577	.616	.916					
CAPE BEALE								
Trip 1	.461	.643	.607					
Trip 2	.256	.350	.352				_	
ALASKA QUEEN II	—		.338			.258	.340	
REPUBLIC (1973)								
Trip 1		2.135		3.773		4.056	4.760	
Trip 2	_	2.049	_	2.301		3.488	2.508	

Table 3. Catch per hook in pounds of halibut.

The results from "t-tests" indicated that both the slope and intercept were significantly different from zero, therefore, neither the length- nor the hooks-standard gives a satisfactory description of the experimental fishing results. (We used the 18-foot gear as the standard because it was the hook-spacing most commonly used in the commercial fishery. In the calculations, we extrapolated the values for trips on which the 18-foot gear was not used.)

The spacing-standard states that catch per hook increases with hook-spacing, but at a rate less than proportional to the latter. This standard can be described as an asymptotic function:

$$CPUE_{h}/CPUE_{18} = C_{m} (l-e^{-kh})$$

where C_{∞} is the maximum relative catch per hook and k is a constant (Figure 3). The estimated asymptote is approximately 1.50, only slightly larger than the relative catch per hook of 36- and 42-foot gear. This implies that the relative catch per hook is near the maximum at these wide spacings.

Figure 3. The relative catch per hook in pounds, $CPUE_h/CPUE_{18}$, of different hook-spacings.

SIZE SELECTIVITY

The first trips of the hook-spacing experiment with the *Chelsea* suggested that the mean weight of halibut increases with hook-spacing: fish from the 12-foot gear averaged 38 pounds; from 18- to 21-foot gear, 40 pounds; and from 24-foot gear, 43 pounds (Skud 1972). Subsequent trips also showed an increase in mean weight with an increase in hook-spacing or rig (Appendix I, Table 4). Analysis of covariance showed that this increase was significant:

I

Source of Variation	of Freedom	F-Statistic	Significance
Main effects: trips	13	35.20	0.1%
Covariate: hook-spacing	1	7.19	1.0%
Residual	30		

Figure 4 shows that the difference in mean weight of halibut increases as the difference in hook-spacing increases.

We can only speculate as to the reasons for the size selectivity of different hook-spacings, but it is associated with differences in behavior relative to the size of halibut. The most reasonable explanation is that smaller halibut have smaller feeding ranges and, when hooks are widely spaced, the probability of encountering a hook is reduced more for small fish. When these smaller fish are excluded, the mean size in catch is increased.

Size selectivity also can be important in the estimation of growth and mortality (Ricker 1969). Although beyond the scope of this paper, mention should be made of past findings on growth of Pacific halibut. Southward (1967) and Bell and St-Pierre (1970) showed that the growth rate has increased markedly since the early years of the fishery. This increase was assumed to be due to a combination of favorable environmental conditions and density-dependent factors (Southward 1967). Because of the long-term changes in hook-spacing, part of the assumed increase in growth may be an artifact of selectivity, but the reported increase in growth is much greater than can be accounted for by the differences credited to hook-spacing.

Figure 4. Relation of mean weight of halibut to differences in hook-spacing.

CONCLUSIONS

Before 1972, the Commission defined the fishing effort by longlines in terms of either the length of groundline or the number of hooks. Skud (1972) reexamined these old standards and concluded that the spacing of hooks also must be considered. The present paper supports this conclusion with data from fishing experiments that covered all seasons and spanned the coast from Oregon to the Bering Sea. The observed catch per hook increased with hook-spacing, but at a progressively decreasing rate. These findings agree with CPUE data from the commercial fishery and, since 1972, the Commission has used the relation derived from these experiments to standardize the fishing efforts by longlines of different hookspacings.

Apparently, fishermen have realized the advantages of increasing hookspacing on certain fishing grounds. Indeed, fishermen questioned the reliability of the hooks-standard at an IPHC annual meeting in 1967. This report may help fishermen attain the optimum spacing of their hooks, but other considerations such as soak-time, bait, etc., also will have to be evaluated. Skud (1972) showed that the baiting and hauling times per skate were reduced at the wider hookspacings.

Factors Affecting Longline Catch and Effort:

÷

.

. . .

III. Bait Loss and Competition

by

Bernard E. Skud

III. Bait Loss and Competition

by

Bernard E. Skud

INTRODUCTION

Although longline gear has been used extensively in fisheries throughout the world, relatively little information is available on the hook-by-hook catch, bait loss, and related data. Such knowledge is important to managment of longline fisheries as it is needed to assess changes in the fishery that affect estimates of abundance. Records of this type were collected in conjunction with a study of the effects of hook-spacing on the catch of Pacific halibut (*Hippoglossus stenolepis*) and have been analyzed in this paper.

As indicated in the General Review, most of the studies regarding competition, saturation, or bait loss apply to pelagic longline fisheries or are theoretical in nature, but they provide little data on the hook-by-hook results. Murphy and Shomura (1953), Murphy and Elliot (1954), and others did compare the catch of tuna on hooks at different depths. Murphy and Elliot (1954) and Maéda (1960 and 1967) considered the spatial distribution of the catch on longline gear to study the schooling behavior of tuna. Collectively, these papers showed the importance of hook-by-hook records to evaluate estimates of CPUE for longline gear. In addition, these detailed records can provide information on the behavior of the fish and the most effective fishing techniques.

The major objectives of this study were to examine the effects of bait loss, the distribution of halibut on the gear, and the catch of incidental species on the CPUE of longline gear in the halibut fishery. Unless otherwise noted, all references to CPUE are in terms of number of fish rather than weight as conventionally used by IPHC. Secondarily, the study provided information on competition between halibut and other species.

Throughout the paper comparisons are made with results from other longline fisheries, in particular that for Pacific tuna, to determine whether the observed phenomena are peculiar to the halibut fishery or have broader implications.

COLLECTION OF DATA

The data analyzed in this report were collected as an adjunct to hook-spacing studies during the early 1970's. The results of those studies and the description of the fishing methods were described in the previous reports, Part I and Part II. During 6 of the 14 cruises, special studies were conducted in which each hook was examined as the gear was retrieved to determine whether a fish was caught or the bait retained. The model in Figure 1 depicts four possible alternatives for each hook, i.e., at given time intervals, the bait may be retained or lost or a halibut or another species may be captured. The basic diagram was presented by Neyman (1950) and was adapted for the tuna fishery by Rothschild (1967). I have changed the symbols and added a category for empty hooks (lost bait).

ŧ

In 2,214 sets of gear, over 170,000 hooks were examined. Depth of fishing was recorded for each set. Hook-spacing and soak-time were recorded for each skate. The hook-by-hook observations from all cruises were categorized as follows: empty hook (E), baited hook (B), halibut (H), and other fish (F). The other-fish category occasionally included species other than fish, such as crabs and starfish. Detailed information (location, date, and hook-spacing) for each cruise is listed in Tables 1 and 3 of Hamley and Skud. Cruises of each vessel have been designated by Roman numerals: I and II for *Chelsea* trips 1 and 2 in 1971; III for the *Republic* 1972; IV for the *Alaska Queen;* and V and VI for the two trips of the *Republic* 1973. The results of the observations from all cruises are summarized in Appendices II and III.

During all cruises, the gear was soaked (left on the bottom) for at least 5 hours. To obtain data on bait loss during shorter soaks, a one-day experiment was conducted in Puget Sound in March 1978. The soak-time of these sets varied from 10 minutes to 4 hours.

Figure 1. Model depicting baited hooks (S_B) , empty hooks (S_E) , hooks with halibut (S_H) , and hooks with other species (S_F) for successive instants of time (k = 1, 2, ..., M). Other alternatives exist, such as S_H to S_E and S_F to S_H , but are infrequent and were not depicted.

GENERAL OBSERVATIONS

Before discussing the results concerning bait loss and competition, general observations regarding saturation, catch with soak-time and depth, and mean size with depth are presented. As indicated below, these factors and the seasonal changes in the distribution of halibut can influence the estimates of CPUE.

Saturation

In the preceding report, Hamley and Skud showed that the catch rate of halibut

was low, averaging 5 per 100 hooks, indicating that saturation was not a problem. However, this conclusion was reached without examining the actual distribution of halibut on the gear or the number of hooks occupied by other species. The hook-by-hook observations provide this detail. Obviously, once a bait was lost or a halibut or another fish was captured, that hook was no longer an effective unit of effort, except when the captured fish was small enough to be taken by a larger one or in the remote chance that a fish was snagged by a bare hook. This reduction in the number of effective hooks is fundamental in determining whether the gear is saturated.

Of the 170,016 hooks examined as the gear was retrieved, 106,375 were empty (no bait or catch), 42,593 still had a bait, 6,172 had caught halibut, and 14,876 had caught other species. The ratio of baited hooks retrieved (42,593) to hooks with a catch (21,048) indicates that saturation was not a problem. However, portions of the gear could have been saturated, but it is not possible to fully evaluate this possibility without knowing whether the bait was lost when the gear was being set, while it was soaking or when it was being retrieved. Whatever the cause, baitless hooks could bias conclusions about saturation. One means of determining how often fish were competing for bait is to examine the frequency of adjacent hooks that caught fish. The observations showed that 551 adjacent hooks (pairs) had halibut (HH), 869 pairs had a halibut and another species (HF or FH) and 2,093 pairs had other species (FF). The total number of pairs with a catch was 3,513. Thus, of the 21,048 fish caught only 7,026 were taken in pairs, and there were 8,920 pairs with a fish and a bait (HB, BH, FB or BF) and 13,828 baited pairs (BB) that were available. If all hooks had retained their bait, the number of adjacent hooks with a catch would have been greater, but these results indicate that the gear was not saturated.

Catch and Soak-Time

Skud (1975) presented data on the relation of catch per skate with soak-time. These data had been collected by IPHC in the 1960's and were analyzed by Myhre (unpublished). The results were based on a large number of observations (100 to 300 skates per year) on different fishing grounds and, although variability was high, the increase in CPUE (in pounds) with soak-time was clearly evident (Figure 2).

Figure 2. Relation of catch per skate to soak-time.

The hook-by-hook observations provided the opportunity of comparing soak-time with CPUE in numbers of halibut. The data corroborate the earlier findings on the relation of catch with soak-time, but, as before, showed a high degree of variability. Data from four cruises showed consecutive increases in CPUE of halibut at 5-hour intervals (0.0-5.0 to 15.1+), but data from II and III showed no trend (Table 1). The CPUE for other species was quite different than for halibut and only one cruise (I) showed a consecutive increase in CPUE with time. In fact, several of the cruises indicated that the catch of species other than halibut declined with soak-time.

Soak-Time	Cruises							
(hours)	I	II	III	IV	V	VI		
	No. of halibut per 100 hooks							
0.0- 5		2.31	_	1.35	1.78	_		
5.1-10	1.18	3.23	4.59	1.46	6.79	5.51		
10.1-15	2.48	2.06	2.86	1.47	10.43	8.05		
15.1+	2.70	2.17	3.45	_	17.75	16.34		
Weighted Mean	2.33	2.43	3.37	1.44	8.17	6.68		
		No. of	other spec	ies per 100	hooks			
0.0- 5	_	3.23		13.06	10.18	26.67		
5.1-10	5.16	4.01	6.97	9.56	8.69	8.90		
10.1-15	8.38	5.83	7.11	9.52	5.21	7.80		
15.1+	11.90	4.11	5.21	—	7.52	3.96		
Weighted Mean	9.62	4.49	5.81	10.37	7.48	8.42		

Table 1. Comparison of soak-time and number of halibut per 100 hooks.

The catch rates for cruises V and VI were the highest for both halibut and other species and the amount of fishing effort at different soak-times was reasonably well distributed. This combination of events was conducive to examination of the results at shorter (3-hour) intervals (Table 2). The data show that the CPUE of halibut increased consecutively with time, whereas the CPUE of other species showed a continuous decline, each with one exception. It seems unlikely that the other species were escaping from the hooks, particularly when halibut, which are considerably larger and more powerful, were accumulating on the gear. This circumstance suggests that the other species, which generally are less than 10 pounds, are preyed upon by halibut or other large predators. Although halibut are sometimes captured on a hook already occupied by another fish, I assume that most halibut would be successful in capturing the other fish without being caught themselves. In any case, it is of interest to note, that the two cruises (II and III), which did not show an increase in the catch of halibut with time, not only had the lowest catch of other species but also that this catch showed no perceptible trend with time. Obviously, additional research is necessary to determine the relation between the catch of halibut and other species. However, I think that the observed decline in the catch of other species with time is peculiar to halibut gear, because Japanese blackcod gear catches a much higher proportion of the other species (see Table 7) which I assume increases with soak-time.

		Cruise	V		Cruise V	I	TOT	AL
Soak-time (hours)	Skates (No.)	Halibut (No./100	Other hooks)	Skates (No.)	Halibut (No./100	Other hooks)	Halibut (No./100	Other hooks)
0.0- 2.9	0	0.00	0.00	0	0.00	0.00	0.00	0.00
3.0- 5.9	33	2.46	9.24	39	3.77	10.46	3.11	9.85
6.0- 8.9	74	8.28	9.27	120	5.23	8.55	6.41	8.83
9.0-11.9	63	11.33	5.20	99	7.77	8.35	8.96	7.29
12.0-14.9	44	8.08	5.53	81	8.73	7.49	8.48	6.73
15.0-17.9	7	16.85	6.99	3	16.34	3.96	16.71	6.18

Table 2. Soak-time and the catch of halibut and other species, Cruises V and VI.

The relation of catch to soak-time also has been observed in other longline fisheries. Murphy (1960) showed a 2- to 3-fold increase in the catch of tuna from 5- to 8-hour soaks, but the catch declined slightly during the next 2 hours. Hirayama (1969b) also showed an increase in catch with soak-time but in one of his experiments the subsequent decline did not occur until after 12 hours. Maéda (1960) discussed the increase in catch of tuna with soak-time and pointed out that the rate of increase differed in accordance with the time of the set relative to the feeding behavior, e.g., the increase was greatest when the gear was set before the active feeding at dawn. Takagi (1971) also found that the time of the set affected the relation between the catch of salmon and the soak-time of longline gear. Sets made just before dawn or dusk were more productive than at other times and the catch increased with time, whereas the catch from sets made during the day often showed little or no change with time.

Factors such as tidal conditions and feeding behavior conceivably affect the catch of halibut, but these factors were not included as part of this analysis. Bait retention in halibut fishing obviously plays an important part in determining the catch rate with time. The fact that the catch appears to reach an asymptote and then may decline, suggests that the loss of bait from the hooks and perhaps deteriorating attractiveness of the bait, as well as local depletion, contribute to this relation of catch with time.

Catch With Depth

When all cruises were combined, CPUE increased with depth (Table 3): 0.017 in shallow depth (<75 fathoms), 0.039 in medium (75-125 f) and 0.043 in deep (>125 f). The variability of the results was high as shown in the comparison by cruises. Cruise IV was the only one in which the catch in shallow water was higher

1

than in medium or deep water. Although the CPUE from other cruises did not always increase with depth, the CPUE of medium and deep waters always exceeded that in shallow waters. Cruise IV was conducted off Oregon and Washington in August and had the lowest mean weight of halibut (23.8 pounds). The average weight of fish from the other cruises, conducted in Alaska from March to July, ranged from 32 to 40 pounds. These differences may explain why the results from Cruise IV did not conform with the other cruises.

Fathoms	< 75	75-125	>125
Total Hooks	26,904	100,507	42,605
Number of Halibut	449	3,875	1,848
CPUE	0.017	0.039	0.043
Cruise		CPUE	
Ι	0.008	0.024	0.036
II	0.018	0.025	
III	0.001	0.068	0.013
IV	0.023	0.006	
V	0.011	—	0.089
VI	0.012	0.072	0.071

Table 3. Comparison of CPUE of halibut with depth.

Relatively little data on the catch with depth have been analyzed by IPHC, but unpublished data collected in 1976 during August showed that the best catches were taken at intermediate depths of 50 to 100 fathoms. In general, halibut move to shallow water as the temperature increases in the summer and early autumn. This change in seasonal distribution apparently contributed to the variability of the data in the experimental studies.

Mean Weight and Depth

Although CPUE of halibut generally increased with depth in the experiments, the increase in CPUE by number was not as great as that by weight, indicating that the mean weight of fish taken in deeper water is greater than that in shallower water. I examined the data from the several cruises in an attempt to confirm this interpretation. Although all the cruises included at least 2 depths, the number of fish taken at each depth was not always sufficient for comparison. The following table shows the mean weight (number of fish in parentheses) by three depth categories:

	De	epth Category	
Cruise _	Shallow	Medium	Deep
I	32.9 (196)	36.0 (736)	
II	27.4 (9)	41.2 (57)	
III	43.7 (47)		34.5 (327)
IV	24.0 (183)	22.9 (53)	
V	7.4 (18)	36.8 (1,275)	
VI	13.0 (26)	32.1 (1,382)	38.5 (227)
Mean	24.7	33.9	36.5

Although the average of these cruises does show an increase in mean weight with depth, not all of the cruises showed this trend and additional data are needed to confirm the relationship. As discussed in the previous section, the seasonal changes in the distribution of halibut also can influence the mean size with depth.

Thompson (1916) examined the relationship of mean weight to depth and although his data combined records from different fishing grounds and different seasons, the results are informative. Prior to 1910, his data only included depths of 15 to 75 fathoms, and the average weight of fish was greatest at the shallowest depths. The data collected after 1910 were more extensive and included depths to 135 fathoms. These data were in general agreement with the observations from the present study.

BAIT LOSS

Few hook-by-hook observations were available for soaks less than 5 hours, but the available data indicated that at least 50% of the hooks lost their bait within this time period. Some of this loss occurred when the gear was set. Baits were regularly seen flying off the hooks as the gear moved through the setting chute, seagulls occasionally stole the bait before the hooks were submerged, and I assume an additional loss occurred when the hooks hit the water and were lowered through the water column. Baits also may be lost when the gear is retrieved (hauled-in). Other causes of bait loss would include baits that are taken by fish or crustaceans without being hooked, baits that are lost as hooks are snagged on the bottom, and deterioration as baits softened with time.

Analysis of the hook-by-hook experiments showed that, in general, bait loss increased with soak-time (Table 4). Four of the cruises showed consecutive increases with time, and the results in the others, although variable, showed a higher proportion of empty hooks for soaks over 10 hours than those under 10

	Cruises						
	Ι	II	III	IV	V	VI	
Soak-Time (hours)			Per	cent			
0.0- 5	_	57.3	_	68.1	53.7	66.7*	
5.1-10	41.2	65.8	60.0	71.2	59.5	64.2	
10.1-15	50.5	67.1	61.6	81.5	70.0	72.1	
15.1+	52.4	73.9	67.9	_	67.0*	70.3*	
Depth (fathoms)							
<75	53.6	63.3	50.2	63.2	48.9	43.7	
75-125	49.1	66.8	66.0	80.1	_	61.1	
>125	49.8	_	66.3	_	63.7	67.7	
Hook-Spacing							
12-18 feet	46.6	65.0	59.9	69.4	60.2	55.5	
21-24 feet	55.0	69.4	68.0	_	59.6	62.6	
36-42 feet	—		71.0	74.6	68.0	65.1	

Table 4. Percentage of empty hooks with soak-time, depth and hook-spacing.

*Based on less than 10 skates

hours. Obviously, the greatest loss of bait occurred during the first 5 hours and was lower and more gradual thereafter.

I also examined the bait loss with depth and hook-spacing (Table 4). With only one exception in each category, the percentage of empty hooks increased with depth and hook-spacing. For all cruises combined, the loss with depth increased from 60% at the shallow depth to 62% at medium depth and 66% at the greatest depth, and the loss with paired sets of spacings (12-18, 21-24, 36-42) was 59% for the narrow, 65% for the intermediate, and 70% for the widest-spaced gear.

I also examined the effects of these three variables on bait loss by holding the other two constant for each cruise. Because the spacing, depth, and soak-time were not the same on all cruises, different components of the variables had to be used for some cruises and components within variables were combined to obtain enough data for the comparison. For these reasons and because the number of variables was high and the number of replicates limited, I did not utilize analysis of variance or other multivariate techniques to test significance. I simply relied on probability of sequential events as evidence of significance. The results of the comparison with 2 variables held constant are shown in Table 5, confirming the relationship of bait loss with soak-time, depth, and hook-spacing, shown in the earlier comparison. The selected categories (e.g., hook-spacing) provided the greatest number of components for comparison. Other categories, which had more empty cells, showed similar trends but with exceptions, and, in a few instances, the opposite trend.

Soak-Time	Cruise					
(hours)	Ι	Π	III	IV	v	VF
00.0-10.0	38.73	64.76	59.09	78.89	54.27	59.98
10.1+	47.23	65.74	60.03	80.94	69.27	71.62
Comparisons a Comparisons a	re for 13-fo re at mid-o	oot spacing lepth exce	g except IV pt V whic	V which w h was deej	ras 18-foot 5.	•
Depth (fathoms)						
<75	33.23	53.53	50.19	54.77	47.89	39.04
75-125	38.73	65.36	60.84	80.33	_	59. <u>9</u> 8
>125	43.65	—	62.16		54.46	68.11
Comparisons a Comparisons a	are for 13-f are for 5- t	oot spacir o 10-hour	ng except soaks exc	IV which cept III wl	was 18-fo hich was	ot. 15+.
Hook-Spacing (feet)		·			
12-18	38.73	64.66	59.09	80.33	54.46	59.58
21-24	44.17	67.17	_	_	61.21	69.16
36-42	_		67.59	80.93	65.85	73.44
Comparisons a Comparisons a	are for 5- t are at mid-	o 10-hour depth exc	soak-time ept V whi	es. Ich was de	eep.	

Table 5. Percentage of empty hooks with two variables held constant.

Whereas one might expect a greater bait loss with time and depth because of bait deterioration or mechanical loss, the greater loss with hook-spacing cannot be explained on this basis. Apparently, baits are stolen and assuming a constant abundance of organisms that steal the bait, it would appear that a greater proportion of baits are stolen when the bait "abundance" is lower, i.e., the probability of a bait being stolen is greater at the wider hook-spacing, much the same as the probability of capturing a halibut.

As shown in Tables 1 and 3 and in Report II by Hamley and Skud, the CPUE of halibut also increased with soak-time, depth, and hook-spacing. The fact that CPUE and bait loss follow the same trend suggests that the bait loss is related, in part, to the abundance of halibut, but it is not possible to determine how much of the bait is stolen by halibut, by other species, or is otherwise lost. However, fishermen have reported that "whole baits" are frequently found in the stomachs of halibut. Fernø et al. (op. cit.) showed that only 10% of whiting attacks on the bait resulted in the capture of a fish. If the same applied to halibut and all attacks resulted in lost baits, halibut would be credited with 50% of the observed bait loss. If only half of the attacks resulted in a bait loss, the estimate would be 25%.

Bait loss also has been examined in the tuna fisheries. Shomura (1955) showed that the loss of bait increased with soak-time in the Pacific Ocean. He also demonstrated that the shallowest hooks, those most susceptible to agitation from surface swells, had a greater loss than the deeper hooks. Wathne (1959) confirmed these findings in experiments conducted in the Gulf of Mexico and the Caribbean Sea. These authors also reported that bait loss varied with the species used as bait and they recommended "double-hooking" to minimize the loss. Shepard et al. (1975) also examined bait loss in an experimental longline fishery for salmon. The rate of loss differed on the three research vessels, among gears, with sea condition, and with the amount of gear. The bait loss increased in rough seas and with soak-time, which increased when more gear was fished. The authors estimated the total expected bait loss and used "effective effort" in their calculation of CPUE.

Puget Sound Experiment

A special study was conducted in March 1978 to determine the loss of baits in sets of less than 5 hours duration. The M/V Chelsea was used in this experiment and the sets were made in Puget Sound. The fishing technique and method of recording data were similar to those described for the other experiments. The hooks were baited alternately with herring (Clupea pallasii) and blackcod (Anoplopoma fimbria). Captain A. Samuelsen reported that the bait was better (firmer) than is usually available during the commercial season. Only one bait came off the hook during setting, whereas the previous observations indicated that as many as 10 baits per skate may be lost during regular fishing operations. In this experiment, 4 sets of 4 skates each were made. On 2 of the sets, the gear was retrieved immediately after setting — in fact, all of the last skate may not have reached the bottom before hauling began. All of these skates were retrieved between 10 and 67 minutes. Skates in the other 2 sets were retrieved after soaking for 100 to 244 minutes. Halibut were not expected in this area and none was taken. Nearly all of the catch was dogfish (Squalus acanthias) and ratfish (Hydrolagus colliei), and the results show that the initial loss of bait from gear handling was minimal (Table 6).

Soak Per Skate	Total ¹	Em Ho	pty oks	Fish Ho	on oks
(minutes)	Hooks	(No.)	(%)	(No.)	(%)
10	80	2	2.5	1	1.3
11	62	0	_	1	1.6
24	58	1	1.7	_	_
29	69	9	13.0	3	4.3
40	59	8	13.6	2	3.4
52	70	22	31.4	13	18.6
53	81	29	35.8	8	9.9
67	74	32	43.2	17	23.0
100	75	38	50.7	24	32.0
117	80	34	42.5	24	30.0
134	71	29	40.8	23	32.4
152	71	27	38.0	27	38.0
185	76	45	59.2	15	19.7
205	55	35	63.6	10	18.2
220	60	25	41.7	18	30.0
244	75	39	52.0	23	30.7

Table 6. Number and percent of fish caught and baits lost during soaks of 4 hours or less on the M/V CHELSEA experiment, 1978.

¹ The hooks on each skate were spaced uniformly, but the lengths of skates differed, accounting for the wide range of the number of hooks per skate.

The loss of bait increased with time and reached the same levels (50 to 60%) observed during the main experiments after 5-hour soaks. Interestingly, the loss of bait was not constant with time during the first 4 hours of soak (Figure 4). Although conditions in this experiment were not entirely comparable to the other experiments, the results did indicate that the loss of bait was similar.

Regarding bait loss, fishermen generally consider herring to be the least durable type of bait, but many prefer to use herring along with other baits because it is effective and less expensive. The results of the short-soak experiment indicated that the loss of herring baits was higher than for blackcod baits but that the rate of catch with herring was higher during the first hour. For longer soaks, the catch was about the same for both types of bait. Although fish may steal much of the bait, additional study is necessary to determine whether the higher loss of herring bait is due to its attractiveness or to its relatively low durability.

DISTRIBUTION OF THE CATCH ON THE GEAR

Because some of the baits are lost before the gear begins to fish and an additional loss occurs with soak-time, all of the baits are not available to halibut during the entire set. The results indicate that at least 50-60% of the baits are lost during the first 5 hours; however, some of these are actually lost when the gear is being retrieved. Although bait loss is high and will affect the apparent distribution of the catch on the longline gear, I used the following approximation to determine whether the halibut were randomly distributed on the gear. I calculated the probability of catching halibut on adjacent hooks in "runs"

Figure 4. Bait loss and soak-time in the Puget Sound experiment (curve fitted by eye).

from 1 to 5, using the data from each cruise (number of halibut \div number of hooks = p) to calculate the expected frequency and combining the results to obtain the expected frequency for all cruises. Assuming a random distribution of halibut along the groundline, the expected frequency of the runs approximates a geometric distribution. The expected frequency of a run of $1 = (1-p)^2$ and the ratio of frequencies for runs of 2 halibut (HH) to runs of 1 halibut (H) is equal to p. Similarly, the ratio of other runs, HHH/HH, etc., are equal to p. Based on this premise, I calculated the expected frequencies of the runs as indicated below:

Length of Run	Expected Frequency	Observed ¹ Frequency
Н	5,591	5,152
HH	262	403
HHH	15	57
HHHH	1	5
ннннн	0	3

The observed frequencies of runs greater than H exceeded the expected and the difference was highly significant (chi square test), indicating that the halibut and/or the available baits were not randomly distributed. The results

¹ Frequencies of runs for each cruise are tabulated in Appendix III. There also were two runs of 8 halibut.

of this comparison suggest that there is a tendency for halibut to be clustered, however, most of the fish were not taken on adjacent hooks even though there were many adjacent baits available. Obviously, more halibut would have been taken on adjacent hooks if none of the baits had been lost or if other species had not been captured. Other factors such as fish size and abundance undoubtedly affect the degree of clustering.

I also calculated the expected frequency of catching halibut on adjacent hooks for different hook-spacings (12-18 foot, 21-24 foot, and 36-42 foot) and found less deviation between expected and observed values at the wider hookspacings. This result suggests that halibut maintain broad territories relative to the spacing of hooks. That is, at the wider spacings, there may only be one hook per territory and the likelihood of capturing halibut on adjacent hooks is increased. Further, fewer small halibut are taken on the widely-spaced gear, suggesting that the size of the territories may be related to fish size. This may explain why larger fish are more successful in capturing the bait as suggested by Allen (1963) and Myhre (1969).

COMPETITION

As mentioned previously, the other species of fish caught were not recorded separately and were combined with invertebrates as well. I compared the catch of other species (F) with the catch of halibut (H). The ratio (H/F) increased with wider hook-spacing as shown in the following table:

	_		Hook-spac	ing in fee	t	
	12	18	21	24	- 36	42
		Ca	atch in nu	mber of f	ish	
Halibut (H)	1,819	196	1,295	260	531	483
Other Species (F)	4,690	485	2,653	519	626	691
H/F	0.37	0.40	0.49	0.50	0.85	0.70

Because the number of hooks per skate decreases with wider spacing, this trend indicates that halibut are more successful than other species in competing for the available bait and can be classed as the "dominant predator". At the narrower hook-spacings, the number of baited hooks is relatively greater than the abundance of halibut and apparently, more of the bait is available to other species. This conclusion is similar to that reached by Hamley and Skud regarding large and small halibut. A larger feeding range, "territory", was suggested as a possible explanation. The same may hold for the relation between halibut and the other species, but other factors such as halibut preying on smaller fish may also be important.

Several experiments comparing Japanese and North American longline gear were reported at annual meetings of the International North Pacific Fisheries Commission (INPFC) and provide information about competition among species. In one experiment (INPFC Document, 1964)¹, the hooks of the Japanese gear were spaced at approximately 30 inches apart, whereas the hook-

¹ Results of a test comparing the catching efficiency of Japanese and North American longline gear. Tokai Regional Fisheries Research Laboratory, October 1964.

spacing of the North American longline gear was approximately 18 feet. The size and material of the hooks and lines also differed, but fishing was conducted on the same grounds at the same time. The catch of halibut and the catch of other species were compared in four parallel sets. The catch of halibut for the two types of gear was nearly the same, whereas the catch of Pacific cod (Gadus macrocephalus) on the Japanese gear was 10 times greater than on the North American gear (Table 7). The Japanese gear also caught substantially more turbot (Atheresthes stomias), blackcod (Anoplopoma fimbria), and other species (pollock, Theragra chalcogramma, and several species of sculpins). The fact that the catch of halibut was nearly the same for both gears even though the number of hooks on the Japanese gear was far greater than the North American gear suggests that the abundance of halibut was comparable and confirms the findings of the IPHC study that indicated halibut were more successful in competing for baited hooks than the other species of fish. It is worthy of note, that the catch of halibut per 100 hooks for the gear spaced at 30 inches was 0.3 and for the 18-foot gear was 0.9. Because spacing was not the only difference between the two types of gear, it was surprising that the relative CPUE of the two gears $(0.3 \div 0.9 = 0.33)$ was at the expected point on the curve presented in Figure 3 of the Hamley and Skud paper.

Groundline in meters	e No. of hooks	Spacing in meters	Halibut	Pacific cod	Turbot	Black- cod	Other
Tapanese							
2,500	1,900	0.76	3	56	3	0	30
2,500	1,900	0.76	2	155	52	41	10
2,500	1,900	0.76	18	292	31	0	2
2,500	1,900	0.76	3	137	1	0	1
TOTAL			-				
- 10,006	7,600		26	640	87	41	43
North American							
4,200	800	5.25	4	6	0	0	1
2,100	400	5.25	5	30	2	2	2
4,200	800	5.25	11	20	2	0	0
3,360	640	5.25	3	11	0	0	1
TOTAL							
13,860	2,640		23	67	4	2	4

Table 7. Catch of halibut and other species on Japanese and North American longlinegear (from INPFC Document 709, 1964).

Kurogane (1968) reported on another hook-spacing study in which halibut were included in the catch and concluded that the traditional Japanese longline gear with narrow spacing and small hooks was superior for catching blackcod and that North American gear with wide spacings and larger hooks was superior for halibut.

The fact that halibut are more competitive and that proportionately more halibut are taken on the widely-spaced gear is an important consideration in the evaluation of CPUE. If other species were equally competitive and increased in abundance when the abundance of halibut declined, the CPUE of halibut could be biased. Because the other species are not as competitive, the results suggest that changes in abundance of halibut relative to the abundance of other species may not seriously distort the estimates of CPUE for halibut. However, the CPUE of the other species would not increase in proportion to actual abundance and the distortion would increase with wider hook-spacings.

ESTIMATES OF CPUE

Prior to 1950, investigators assumed that longline effort was proportional to the number of hooks (see General Review). This basic premise was maintained in later studies in which CPUE was refined to account for saturation and occupied hooks (Gulland 1955 and Beverton and Holt 1957). It also was basic in Murphy's (1960) comprehensive catch equation, which apparently was the first to account for the loss of bait. The proportionality of effort to hooks is inherent in other studies, most recently, that of Rothschild (1967) and Shepard et al. (1975). Rothschild's model was based on the theory of competing risks (Neyman 1950 and Chiang 1968), but his basic approach is similar to Murphy's. Although Murphy did not emphasize the fact that his equation adjusted for competition among species (Rothschild's major objective), the equation did account for hooks occupied by "undesirable species" as well as for hooks without bait. Because of its relative simplicity, Rothschild's equation is described here. A unit of time was divided into M intervals, each of duration 1/M and the transitional probabilities were assumed proportional to the time lapse 1/M, that is, the probabilities of each interval were constant. The instantaneous rate of capture of species i was estimated by:

$$\lambda_{i} = \frac{-n_{i} \left[\log_{e} (n_{o}/N) \right]}{N - n_{o}}$$

where:

 n_o = the number of hooks without a catch n_i = the number of hooks that caught species i N = the total number of hooks

The probability of species 1 being caught, when species 2 was absent is: $P_{o1} = 1 - e^{-\lambda}$

This expression is analogous to the conditional rate of fishing mortality and can be used when 3 or more species are caught, by letting n_1 represent species 1 and n_2 all other species. Rothschild assumed that all hooks without a catch, whether baited or empty, were effectively fishing. He did not incorporate a factor for bait loss, but cautioned that an overestimate of the hooks actually fishing (n_o) would result in an underestimate of the effect of competition.

Ricker (1975) considered Rothschild's model unrealistic because it assumed that no baits were lost to fish that were not caught. Ricker extended the model to account for n_1a_1 baits eaten by species 1 without being captured and for n_2a_2 baits eaten by species 2 to estimate the hooks without bait (n_e) :

 $n_1 a_1 + n_2 a_2 = n_e$

As an example, he assumed $a_1 = a_2 = a$, which was calculated from:

$$a = \frac{n_e}{n_1 + n_2}$$

He substituted n_1 (1+a) for n_1 and $n_0 - n_e$ for n_0 to obtain the conditional probability of removal of baits 1-e^{- λ_{1a}} and the conditional rate of capture becomes:

$$P_{ola} = \frac{1 - e^{-\lambda_{la}}}{1 + a}$$

I considered using this competing-risk model for the halibut data collected during the hook-by-hook experiments even though the loss of bait did not occur at a constant rate (Figure 4) as specified in the model. In my examination of the data, it became apparent that the model implicitly assumes that fishing effort is proportional to the number of hooks, whereas our studies, and the data from other fisheries clearly show otherwise. This suggested that the model could be used if the data were all from gear of the same hook-spacing. However, I eventually realized that if the number of hooks occupied by other species differed substantially from one set to another, the effect would be similar to the effects of different hook-spacing and also would fail to meet the basic assumption of the model. This and other reasons for not applying this model or modifications of Murphy's (1960) catch equation are discussed below.

Paloheimo and Dickie (1964), Rothschild (1967), and others have pointed out that CPUE not only represents the fraction of the population captured by a unit of effort but also, more simply represents the probability of capture. Skud (1972) showed that the catch per hook increased with hook-spacing, i.e., the probability of capture was greater when the distance between hooks increased on a given length of groundline. The present study showed that bait loss also increased with hook-spacing. In effect, the loss of baits widens the distance between baited hooks, thereby increasing the "effective hook-spacing". Therefore, the difference between the wide- and narrow-spaced gear is compounded. If this greater reduction in effort on widely-spaced gear is applicable to the commercial fleet, the actual probability of capture indicated by CPUE is even greater than that shown by Skud (1972).

At this time, and until a more comprehensive model is formulated, it does not seem practical to apply a modification of Murphy's (1960) catch equation or the competing-risk model of Rothschild (1967) and Ricker (1975) to the annual estimates of CPUE in the halibut fishery. The variation in fishing techniques from vessel to vessel, the amount and kind of gear fished, the bait, soak-time, etc., is great. Also, the detailed information on the catch from each commercial operation is not sufficient. For these reasons, standard adjustments are apt to be seriously biased.

Because of the bait loss and the catch of other species, it is obvious that the fishing effort is less and the actual CPUE of halibut is higher than the values reported annually for each regulatory area. However, this does not mean that the calculated annual changes or short-term trends are not representative of the actual CPUE. Because it is impractical to obtain enough detailed data from a large enough sample of vessels in the commercial fleet, it is necessary to assume that the bait loss and the catch of other species is essentially the same from one year to the next. Based on past experience, this assumption has been rational when considering year to year changes; however, there probably have been and can be long-term changes that would adversely affect this assumption. One example is a change in bait. Unpublished data on bait types suggests that octopus bait stays on the hooks longer than other bait. If, as has happened in the past, there is a gradual increase in the use of octopus bait, the bait loss could be reduced or at least the time that bait remains on the hook could be increased and these factors would increase the effective effort of a skate of gear. In the past, when IPHC has been aware of such a change, adjustments have been made in the CPUE. There is the possibility, however, that more subtle changes have not been realized. If the changes in bait, or other changes are made gradually, the year to year changes in CPUE as a measure of abundance are not likely to be serious. Long-term changes, however, could be significant and I do not consider present-day CPUE values comparable with those in the early years of the fishery.

OPTIMIZATION OF FISHING TECHNIQUES

Examination of the logs of the commercial fleet revealed that the fishing success differs widely from vessel to vessel and from year to year. Rothschild (1972) attributed much of the variability in fishing power among vessels to the skill of the skipper. My findings support this conclusion, and suggest that particular techniques of fishing as well as the ability to locate fish might provide the advantages. A skipper fishing at favorable depths, using long-lasting bait and employing optimum soak-times will have a better catch rate than a skipper whose technique is not so refined, even though the latter's vessel is better equipped. Adaptation of techniques to particular grounds and to seasonal changes in the distribution of halibut also contribute to the skipper's success.

Other factors, such as the performance of the crew, can contribute to the efficiency. Skud (1972) showed that baiting-time and retrieval-time aboard the *Chelsea* in 1971 were substantially reduced with wider-spaced gear. More skates could be fished per day and more ground covered with hooks spaced at 21 and 24 feet than at 13 or 18 feet. These findings were confirmed on the other cruises conducted in 1972 and 1973. The average time required to bait a hook did not differ greatly, so, baiting-time per skate decreased with hook-spacing. The average baiting-time for 12-foot gear (about 120 hooks) was approximately 20 minutes, whereas baiting-time for 36- and 42-foot gear was 10 minutes or less. Although the wider-spaced gear usually required less time to retrieve, on the average the difference was less than 2 minutes between the wider-spaced and the narrow-spaced gear.

Long-lasting bait has obvious advantages, but the more fragile baits (such as herring) may be more attractive to the halibut and there are highly successful fishermen that consistently use herring and others that seldom use herring. The more successful fishermen are undoubtedly aware of the advantages offered by different baits and other fishing techniques. They also are aware that baits are lost and stolen and presumably try to minimize their bait loss, however, prior to this study, no quantitative information had been available from the commercial fishery.

DISCUSSION

As evident from this study and others, the experimental design for gear studies is extremely important because many factors influence the catch rate of longline gear and must be considered. Although our design provided meaningful results, certain questions could not be answered because, for example, we did not identify the other species caught. Unfortunately, some factors (such as the availability of bait) are difficult to control. We could have gained more information on the effects of bait had we been able to use only one type or, when mixed, had alternated the types on every other hook. While most designs will be wanting in some respect, the shortcomings of past experiments will serve to alert others conducting similar studies. The analyses of the data also must be considered in the experimental design and, as Blalock (1960) points out, the assumptions required by analysis of covariance severely restrict its utility as a general procedure for handling simultaneously large numbers of variables. He discusses limitations of other multivariate techniques of analysis and mentions that it is possible to control simultaneously for several variables, but cautions that a very large number of cases are required.

Our studies clearly indicate the complexity of measuring effort in the halibut fishery and, along with the excellent studies by Murphy (1960), Maéda (1960), and Hirayama (1969c), show that estimates of CPUE of longline gear must be carefully analyzed. These papers indicate the need for constant review and evaluation of changes in fishing techniques to assure meaningful assessments of stock abundance. Further, the results from the studies of the halibut fishery and those of the tuna fishery show that the effects of hook-spacing, bait loss, etc., are similar and suggest that the same basic phenomena occur in longline fisheries in general.

As indicated, additional research can provide not only valuable information for assessment but also for optimizing fishing techniques. In any case, I see the estimation of CPUE as a continual process of evaluating changes in the fishery and, when possible, conducting experiments to confirm conclusions based on theoretical analyses. I fully expect other studies to enhance the interpretations of this report and the understanding of past and future events in the halibut fishery.

CONCLUSIONS

This study shows that bait loss in the halibut fishery is high and is related to depth, time, and hook-spacing. Although the rate of loss differs with the kind of bait, the evidence indicates that the loss of all types of bait is relatively high. The data are not sufficient to indicate with certainty how the baits are lost. Although losses occur from bait deterioration and handling of the gear, fish also "steal" bait without being captured and apparently, halibut steal a proportionately larger quantity of the baits than other species.

Bait loss is not constant with time and is very rapid during the first 30 to 60 minutes of soak. Thereafter, the loss rate appears to be more or less constant at a relatively low rate depending, in part, on the density of fish on the grounds, hook-spacing, and other factors.

Although Hamley and Skud showed that catch per hook of halibut increased with hook-spacing, there was evidence in this study that the relationship did not hold for the CPUE of other species. The results from certain cruises indicated that CPUE of the non-target species actually decreased with hook-spacing, i.e., was highest when the number of hooks is high relative to the density of halibut. This suggests that halibut is the dominant species and more successful than other species in competing for the available bait. Further, it suggests that CPUE of halibut may not be seriously distorted by a change in relative abundance of the other species; whereas the CPUE of other species will be underestimated at wider hook-spacings. This conclusion applies only to the gear presently in use in the fishery which is selective for halibut. Longlines with lighter lines, smaller hooks, and shorter spacings are more selective for groundfish other than halibut.

Bait loss does affect the estimate of CPUE but, with so many vessels in the fleet, it is not possible to make a useful correction. One can only assume that the annual rate of bait loss is relatively constant, and that the actual and observed CPUE are proportional. For the most part, past data suggest that this assumption is valid, but exceptions are to be expected depending on the availability and quality of the bait.

The results also confirmed that the catch of halibut increases with soak-time but is asymptotic, as is the catch of tuna on longline gear. The data utilized in this report also showed that the catch and mean weight of halibut increased with depth, but these relationships apparently change seasonally.

Models published by other authors (to adjust estimates of CPUE for bait loss and competition between species) all assume that the catch is proportional to the number of unoccupied hooks. Experiments on halibut and tuna longline gear show that this assumption is not valid and that a more comprehensive model is needed.

ACKNOWLEDGMENTS

We are grateful to the captains and crews of the chartered vessels for their cooperation in the collection of the data analyzed in this report. Staff members of IPHC gave valuable assistance during the research cruises, during the analysis of the data, and also in the review of the manuscript. Raymond E. Walden supervised the processing and programming of the hook-by-hook observations. We also wish to acknowledge reviews by Keith S. Ketchen, Loh-Lee Low and Ralph P. Silliman and statistical advice from Donald McCaughran and Jyri Paloheimo.

LITERATURE CITED

Aasen, Olav

1965 Angelseleksjon ved pigghåfiske (Hook selection by spiny dogfish). Saertrykk av "Fiskets Gang", Volume 31, pp. 31-33.

Allen, K. Radway

1963 The influence of behavior on the capture of fish with baits. International Commission for the Northwest Atlantic Fisheries, Special Publication No. 5, pp. 5-7.

Alward, George Lowe

1932 The sea fisheries of Great Britain and Ireland. Albert Gait, Grimsby, 473 p.

Au, Lai-Shing

1972 An inventory of demersal fisheries in Hong Kong. Food and Agriculture Organization of the United Nations, Proceedings of the Indo-Pacific Fisheries Council, Section III, Symposium on Demersal Fisheries, pp. 270-297.

Bell, F. Heward and Gilbert St-Pierre

- 1970 The Pacific halibut. International Pacific Halibut Commission, Technical Report No. 6, 24 p.
- Beverton, R. J. H. and S. J. Holt
- 1957 On the dynamics of exploited fish populations. U.K. Ministry of Agriculture, Fisheries, and Food, Fishery Investigations, Series II, Volume XIX, 533 p.

Blalock, Hubert M.

1960 Social statistics. McGraw-Hill Book Company, Inc., New York, 465 p.

- Chiang, Chin Long
 - 1968 Introduction to stochastic processes in biostatistics. John Wiley and Sons, Inc., New York, 313 p.

Clark, J. R. (Convener)

1960 Report on selectivity of fishing gear. [In] Fishing effort, the effect of fishing on resources and the selectivity of fishing gear. International Commission for the Northwest Atlantic Fisheries, Special Publication No. 2, pp. 27-36.

Forster, G. R.

1973 Line fishing on the continental slope. The selective effect of different hook patterns. Journal of the Marine Biological Association, United Kingdom, Volume 53, pp. 749-751.

Fridman, A. L.

1969 Theory and design of commercial fishing gear. (Translated by IPST, 1973) Pishchevaya Promyshlennost, Moscow, 568 p.

Gulland, J. A.

1955 Estimation of growth and mortality in commercial fish populations. U.K. Ministry of Agriculture and Fisheries, Fishery Investigations, Series II, Volume XVIII, No. 9, 46 p.

- 1964 The abundance of fish stocks in the Barents Sea. Conseil Permanent International pour l'Exploration de la Mer, Rapports et Procés-Verbaux des Rèunions, Volume 155, pp. 126-137.
- 1969 Manual of methods for fish stock assessment. Part 1. Fish population analysis. Food and Agriculture Organization of the United Nations, FAO Manuals in Fisheries Science, No. 4, 154 p.

Hamley, John M.

1975 Review of gillnet selectivity. Journal of the Fisheries Research Board of Canada, Volume 32, No. 11, pp. 1943-1969.

Hamre, Johs

1968 Relative catching capability of a new fish hook for spiny dogfish. Saertrykk av "Fiskets Gang", Volume 46, pp. 793-796.

Hile, Ralph and William R. Duden

1933 Methods for the investigation of the statistics of the commercial fisheries of the Great Lakes. Transactions of the American Fisheries Society, Volume 63, pp. 292-305.

Hirayama, Nobuo

- 1969a Studies on the fishing mechanism of tuna longline I. Relation between catch and size of the gear. Bulletin of the Japanese Society of Scientific Fisheries, Volume 35, No. 6, pp. 546-549.
- 1969b Studies on the fishing mechanism of tuna longline III. The difference of catch by retrieving methods. Bulletin of the Japanese Society of Scientific Fisheries, Volume 35, No. 7, pp. 629-634.
- 1969c Studies on the fishing mechanism of tuna longline IV. Theoretical analysis of fishing effectiveness of the gear. (Translation by Rae R. Mitsuoka.) Bulletin of the Japanese Society of Scientific Fisheries, Volume 35, No. 7, pp. 635-640.
- 1969d Mechanical behavior of tuna longline I. Form of main line and hook depth in water. Journal of the Tokyo University of Fisheries, Volume 55, No. 2, pp. 125-130.
- 1972 Estimation of "swept area" of the unit gear and tuna population size according to catch distribution of tuna longline. Journal of Tokyo University of Fisheries, Volume 59, pp. 9-19.

International Pacific Halibut Commission

- 1972 Annual Report 1971. International Pacific Halibut Commission, 36 p.
- 1973 Annual Report 1972. International Pacific Halibut Commission, 36 p.
- 1978 The Pacific halibut: biology, fishery, and management. International Pacific Halibut Commission, Technical Report No. 16, 56 p.

Ionas, V. A.

1966 Fishing efficiency of the longline. (Translated by Tanya Bevan.) Ryb. Khoz., Volume 42, No. 5, pp. 41-43.

Karlsen, Ludvig

1977 A study of different parameters of longline gear and their effect on catch efficiency. (Partial translation by Carleen Ormbrek.) Norwegian Institute of Fishery Technology Research, No. 661, 72 p.

Kennedy, W. A.

1951 The relationship of fishing effort by gillnets to the interval between lifts. Journal of the Fisheries Research Board of Canada, Volume 8, No. 4, pp. 264-274.

Ketchen, K. S.

1964 Measures of abundance from fisheries for more than one species. Conseil Permanent International pour l'Exploration de la Mer, Rapports et Procès-Verbaux des Réunions, Volume 155, pp. 113-116.

Kurogane, Kenji

1968 Experimental comparison of fishing power of longline for bottomfishes in the North Pacific. Tokai Regional Fisheries Research Laboratory, Bulletin, No. 55, pp. 115-128.

Maéda, Hiroshi

- 1960 A tentative analysis of the distribution pattern of tuna projected on the longline. Journal of the Shimonoseki College of Fisheries, Volume 9, No. 2, pp. 89-308.
- 1967 Distribution pattern of fish in relation to fishing method, with special reference to that of tuna along longline. Symposium on Scombroid Fishes, Part III, pp. 1025-1041.

Mann, Herbert J.

1955 Construction details of improved tuna longline gear used by Pacific Oceanic Fishery Investigations. Commercial Fisheries Review, Volume 17, No. 12, pp. 79-88.

McCracken, F. D.

1963 Selection by codend meshes and hooks on cod, haddock, flatfish, and redfish. International Commission for the Northwest Atlantic Fisheries, Special Publication No. 5, pp. 131-155.

McKenzie, R. A.

1946 The Canadian Atlantic halibut fishery. Fisheries Research Board of Canada, Bulletin No. LXXI, 29 p.

Murphy, Garth I.

1960 Estimating abundance from longline catches. Journal of the Fisheries Research Board of Canada, Volume 17, No. 1, pp. 33-40.

Murphy, Garth I., and K. C. Elliott

1954 Variability of longline catches of yellowfin tuna. U.S. Fish and Wildlife Service, Special Scientific Report: Fisheries No. 119, 30 p.

Murphy, Garth I., and R. S. Shomura

1953 Longline fishing for deep-swimming tunas in the central Pacific, 1950-51. U.S. Department of the Interior, Fish and Wildlife Service, Special Scientific Report: Fisheries No. 98, 47 p. Myhre, Richard J.

1969 Gear selection and Pacific halibut. International Pacific Halibut Commission, Scientific Report No. 51, 35 p.

Myhre, Richard J., Gordon J. Peltonen, Gilbert St-Pierre, Bernard E. Skud, and Raymond E. Walden

1977 The Pacific halibut fishery: catch, effort, and CPUE, 1929-1975. International Pacific Halibut Commission, Technical Report No. 14, 94 p.

Nakamura, Hiroshi

1952 The tunas and their fisheries (Translated by W. G. Van Campen. Originally published by Takeuchi Shobo, Tokyo, 1949). U.S. Fish and Wildlife Service, Special Scientific Report: Fisheries, No. 82, 115 p.

Nédélec, C.

1975 Catalogue of small-scale fishing gear. Food and Agriculture Organization of the United Nations, Fishing News (Books) Ltd., 191 p.

Neyman, J.

1950 First course in probability and statistics. Henry Holt and Co., N.Y., 350 p.

Otsu, Tamio and Ray F. Sumida

1968 Distribution, apparent abundance and size composition of albacore (*Thunnus alalunga*) taken in the longline fishery based in American Samoa, 1954-65. U.S. Bureau of Commercial Fisheries, Fishery Bulletin, Volume 67, pp. 47-69.

Paloheimo, J. E. and L. M. Dickie

1964 Abundance and fishing success. Conseil Permanent International pour l'Exploration de la Mer, Rapports et Procès-Verbaux des Réunions, Volume 155, pp. 152-163.

Parrish, B. B.

1963 Some remarks on selection processes in fishing operations. International Commission for the Northwest Atlantic Fisheries, Special Publication No. 5, pp. 166-170.

Pella, Jerome J. and Christopher Psaropulos

1975 Measures of tuna abundance from purse-seine operations in the eastern Pacific Ocean adjusted for fleet-wide evaluation of increased fishing power, 1960-1971. Inter-American Tropical Tuna Commission Bulletin, Volume 16, No. 4, pp. 283-400.

Pope, J. A.

1966 Manual of methods for fish stock assessment. Part III. Selectivity of fishing gear. Food and Agriculture Organization of the United Nations, Fisheries Technical Paper 41, 50 p.

Ricker, W. E.

- 1958 Handbook of computations for biological statistics of fish populations. Fisheries Research Board of Canada, Bulletin No. 119, 300 p.
- 1969 Effects of size-selective mortality and sampling bias on estimates of growth, mortality, production, and yield. Journal of the Fisheries Research Board of Canada, Volume 26, No. 3, pp. 479-541.

1975 Computation and interpretation of biological statistics of fish populations. Fisheries Research Board of Canada, Bulletin No. 191, 382 p.

Rothschild, Brian J.

- 1967 Competition for gear in a multiple-species fishery. Journal du Conseil International pour l'Exploration de la Mer, Volume 31, No. 1, pp. 102-110.
- 1972 An exposition on the definition of fishing effort. U.S. Department of Commerce, National Marine Fisheries Service, Fishery Bulletin, Volume 70, No. 3, pp. 671-679.
- 1977 Fishing effort. [In] Fish population dynamics. Edited by J. A. Gulland. John Wiley and Sons, pp. 96-115.
- Rothschild, B. J. and A. Suda
 - 1977 Population dynamics of tuna. [In] Fish population dynamics. Edited by J. A. Gulland. John Wiley and Sons, pp. 309-334.

Rothschild, Brian J., and Marian Y. Y. Yong

1970 Apparent abundance, distribution, and migrations of albacore, (*Thunnus alalunga*), on the North Pacific longline grounds. U.S. Bureau of Commercial Fisheries, Special Scientific Report—Fisheries No. 623, 37 p.

Saetersdal, Gunnar

- 1963 Selectivity of longlines. International Commission for the Northwest Atlantic Fisheries, Special Publication No. 5, pp. 189-192.
- Scofield, W. L.
 - 1947 Drift and set line fishing gear in California. California Division of Fish and Game, Fish Bulletin No. 66, 38 p.
- Shapiro, Sidney
 - 1950 The Japanese longline fishery for tunas. U.S. Fish and Wildlife Service, Commercial Fisheries Review, Volume 12, No. 4, pp. 1-26.

Shepard, M. P., R. F. A. Roberts, K. V. Aro, and C. E. Turner

- 1975 Effect of bait loss on catching power of floating longline gear. International North Pacific Fisheries Commission, Bulletin No. 32, pp. 71-75.
- Shingu, Chiomi, Patrick K. Tomlinson, and Clifford L. Peterson
 - 1974 A review of the Japanese longline fishery for tunas and billfishes in the eastern Pacific Ocean, 1967-1970. Inter-American Tropical Tuna Commission, Bulletin, Volume 16, No. 2, pp. 65-230.

Shomura, Richard S.

1955 A comparative study of longline baits. U.S. Fish and Wildlife Service, Special Scientific Report — Fisheries, No. 151, 34 p.

Shomura, Richard S. and Garth I. Murphy

1955 Longline fishing for deep-swimming tunas in the Central Pacific, 1953. U.S. Department of the Interior, Fish and Wildlife Service, Special Scientific Report: Fisheries, No. 157, 70 p. Sivasubramaniam, K.

1961 Relation between soaking time and catch of tunas, in longline fisheries. Bulletin of the Japanese Society of Scientific Fisheries, Volume 17, No. 9, pp. 835-845.

Skud, Bernard Einar

- 1972 A reassessment of effort in the halibut fishery. International Pacific Halibut Commission, Scientific Report No. 54, 11 p.
- 1975 Revised estimates of halibut abundance and the Thompson-Burkenroad debate. International Pacific Halibut Commission, Scientific Report No. 56, 36 p.
- In Press Soak-time and the catch per pot in an offshore fishery for lobsters (Homarus americanus). Journal du Conseil International pour l'Exploration de la Mer, Volume 175.

Southward, G. Morris

1967 Growth of Pacific halibut. International Pacific Halibut Commission, Scientific Report No. 43, 40 p.

Takagi, Kenji

1971 Information on the catchable time period for Pacific salmon obtained through simultaneous fishing by longlines and gillnets. Far Seas Fisheries Research Laboratory, Shimizu, Japan. Bulletin No. 5, pp. 177-194.

Thompson, William F.

1916 Statistics of the halibut fishery in the Pacific: their bearing on the biology of the species and the condition of the banks. [In] Report of the British Columbia Commissioner of Fisheries, 1915, pp. 65-126.

Thompson, William F., Harry A. Dunlop and F. Heward Bell

1931 Biological statistics of the Pacific halibut fishery (1) Changes in yield of a standardized unit of gear. International Fisheries Commission, Report No. 6, 121 p.

Thompson, William F. and F. Heward Bell

1934 Biological statistics of the Pacific halibut fishery (2) Effect of change in intensity upon total yield and yield per unit of gear. International Fisheries Commission, Report No. 8, 49 p.

Tsuji, Satoshi

1974 A historical review of the halibut fishery in Japan, with some notes on the biological information of the fish. (Translated by Rae R. Mitsuoka). Far Seas Research Laboratory, Bulletin No. 11, pp. 77-109.

Van Oosten, John

1935 Logically justified deductions concerning the Great Lakes fisheries exploded by scientific research. Transactions of the American Fisheries Society, Volume 65, pp. 71-75.

Wathne, Frederick

1959 Summary report of exploratory longline fishing for tuna in Gulf of Mexico and Caribbean Sea, 1954-1957. U.S. Bureau of Commerical Fisheries, Commercial Fisheries Review, Volume 21, No. 4, pp. 1-26. Wise, John P. and William W. Fox, Jr.

1969 The Japanese Atlantic longline fishery, 1965, and the status of yellowfin tuna and albacore stocks. U.S Bureau of Commercial Fisheries, Special Scientific Report: Fisheries No. 582, 7 p.

Yamaguchi, Yuichiro and Hiroshi Kobayashi

- 1973 Studies on the appearance of empty hooks. II. The change of breaking strength of baits with different sticking methods. Japanese Society of Scientific Fisheries, Bulletin, Volume 39, No. 6, pp. 605-609.
- 1974 Studies on the appearance of empty hooks. IV. Number of baits in the stomach of hooked fish. Japanese Society of Scientific Fisheries, Bulletin, Volume 40, No. 2, pp. 129-134.

APPENDICES

Appendix I. Results of hook-spacing experiments.

- Table 1. Number of skates fished.
- Table 2. Number of hooks fished.
- Table 3. Weight of fish caught, in pounds.
- Table 4. Average weight of fish, in pounds.
- Table 5. Number of fish caught.
- Table 6. Catch per hook in number of fish.

Appendix II. Hook observations by depth and hook-spacing.¹

Table 1. All cruises combined

- Table 2. Cruise I (Chelsea)
- Table 3. Cruise II (Chelsea)
- Table 4. Cruise III (Republic)
- Table 5. Cruise IV (Alaska Queen II)
- Table 6. Cruise V (Republic)
- Table 7. Cruise VI (Republic)

Appendix III. Frequency of runs of halibut by depth and hook-spacing.

¹ The data in these tables represent all possible combinations of each hook category. For example, 4 halibut on adjacent hooks were counted as 3 HH's and as 2 HHH's. This tabulation contrasts with data in Appendix III in which runs are independent, hence runs of 2 and 3 halibut were not counted when they occurred in a run of HHHH.

			Hook-	Spacing	g in Fe	et .		•
Trip	9	12-13	18	21	24	36	42	Total
CHELSEA (Observer)		162	_	157	_		_	319
CHELSEA								
Trip 1	_	108	108	95	109	_	_	420
Trip 2	_	135	135	135	135	_	_	540
Trip 3	_	142	139	141	144	_	_	566
AGNES-O (Observer)	—	150	80	_	—	_	_	230
REPUBLIC (1972)								
Trip 1		96	_	54		—	85	235
Trip 2		55	_	43	_	_	47	145
SEAPAK								
Trip 1	95	88	96	_	_	_	-	279
Trip 2	79	80	80	_	_	-	_	239
CAPE BEALE								
Trip 1	50	50	50	_	_	_	—	150
Trip 2	45	45	45	_	-		_	135
ALASKA QUEEN II	_	_	114	-		114	111	339
REPUBLIC (1973)								
Trip 1	_	51	-	51	_	50	51	203
Trip 2	—	80	_	80	_	75	79	314
Total	269	1,242	847	756	388	239	373	4,114

•

.

Table 1. Number of skates fished.

Table 2. Number of hooks fished.

			Hook-S	pacing	in Feet			
Trip	9	12-13	18	21	24	36	42	Total
CHELSEA (Observer)	_	19,792	_	11,305	_	_	—	31,097
CHELSEA								
Trip l		13,083	8,840	6,851	6,628	_	_	35,402
Trip 2	_	16,347	11,063	9,733	8,207	_	_	45,350
Trip 3	—	17,202	11,387	10,163	8,755	_	—	47,507
AGNES-O (Observer)	-	16,527	7,113	_	—	_	_	23,640
REPUBLIC								
Trip 1	—	11,905	—	4,429	—		3,564	19,898
Trip 2		6,808	—	3,531	_		1,970	12,309
SEAPAK								
Trip l	16,761	11,310	9,139	—	_			37,210
Trip 2	12,674	10,031	7,509	_	_		_	30,214
CAPE BEALE								
Trip l	9,794	6,247	5,117	_		_	_	21,158
Trip 2	8,816	5,364	4,531		_		_	18,711
ALASKA QUEEN II	_	_	9,225	_	_	4,589	3,859	17,673
REPUBLIC (1973)								
Trip l	_	6,081	_	4,141	_	2,040	2,101	14,363
Trip 2	_	9,528	_	6,377	_	3,052	3,280	22,237
Total	48,045	150,225	73,924	56,530	23,590	9,681	14,774	376,769

			Hook-S	pacing	in Feet			
Trip	9	12-13	18	21	24	36	42	Total
CHELSEA (Observer)	_	15,477	_	8,592	_	_		24,069
CHELSEA								
Trip 1	—	9,498	6,577	6,426	6,721	_		29,222
Trip 2		8,484	8,209	9,081	7,460	_	_	33,234
Trip 3	_	9,960	11,706	8,039	9,123	—		38,828
AGNES-O (Observer)	_	23,799	11,601	—		_	_	35,400
REPUBLIC (1972)								
Trip 1	_	2,869	_	1,962	_	_	2,263	7,094
Trip 2	_	10,219	_	8,527	_	_	5,942	24,688
SEAPAK								
Trip 1	4,425	3,721	2,111	_	_	_		10,257
Trip 2	7,313	6,179	6,878	_		_		20,370
CAPE BEALE								
Trip 1	4,515	4,017	3,106	_	_	_		11,638
Trip 2	2,257	1,972	1,595	_		_	_	5,824
ALASKA QUEEN II	_	—	3,118			1,184	1,312	5,614
REPUBLIC (1973)								
Trip 1	_	12,982		15,624	_	8,274	10,001	46,881
Trip 2		19,523	_	14,673		10,646	8,222	53,064
Total	18,510	128,700	54,901	72,924	23,304	20,104	27,740	346,183

·· .

Table 3. Weight of fish caught, in pounds.

•

Tabl	e	4. <i>A</i>	Average	weight	of	fish,	in	pounds.	•
------	---	--------------------	---------	--------	----	-------	----	---------	---

		Ho	ok-Spacin	ng in Fee	:t		
Trip	9	12-13	18	21	24	36	42
CHELSEA (Observer)		33.87	_	33.83	` <u> </u>	_	_
CHELSEA							
Trip 1	_	35.84	36.95	42.84	35.94		
Trip 2	_	28.66	34.78	38.16	38.65	_	
Trip 3	_	52.98	46.82	42.53	52.43	_	_
AGNES-O (Observer)		11.51	11.21	_		—	_
REPUBLIC (1972)							
Trip l	—	28.69	-	32.70	_	—	36.50
Trip 2	—	31.83	_	33.57	_	_	39.61
SEAPAK							
Trip l	36.27	38.36	28.92	—	_	—	—
Trip 2	18.61	17.26	21.56	—			_
CAPE BEALE							
Trip 1	6.25	6.47	7.11	-	_		
Trip 2	33.69	31.30	39.88		_		_
ALASKA QUEEN II		_	25.77	—	_	20.41	23.02
REPUBLIC (1973)							
Trip l	_	33.81	—	36.94	_	40.36	38.03
Trip 2	—	31.95	_	31.62	<u> </u>	32.96	39.15

			Hook-	Spacing	in Fee	et	·	
Trip	9	12-13	18	21	24	36	42	Total
CHELSEA (Observer)	-	457	_	254	_		_	711
CHELSEA								
Trip 1		265	178	150	187		_	780
Trip 2	_	296	236	238	193	_		963
Trip 3		188	250	189	174		_	801
AGNES-O (Observer)		2,067	1,035	_		_		3,102
REPUBLIC (1972)								
Trip l		100	-	60	—	—	62	222
Trip 2	—	321	_	254	—		150	725
SEAPAK								
Trip l	122	97	73	_		—		292
Trip 2	393	358	319			—	—	1,070
CAPE BEALE								
Trip 1	722	621	437	_			—	1,780
Trip 2	67	63	40	_	_		_	170
ALASKA QUEEN II		—	121	_	_	58	57	236
REPUBLIC (1973)								
Trip 1	_	384	_	423	_	205	263	1,275
Trip 2		611		464	-	323	210	1,608
Total	1,304	5,828	2,689	2,032	554	586	742	13,735

¢

Fable	5.	Number	of	fish	caught.
Labic		rumou	0.	11011	caugin

	et						
Trip	9	12-13	18	21	24	36	42
CHELSEA (Observer) CHELSEA	—	.023	—	.022	-		_
Trip 1	_	.020	.020	.022	.028		—
Trip 2		.018	.021	.024	.024	_	_
Trip 3	—	.011	.022	.019	.020	_	_
AGNES-O (Observer)		.125	.146		_	_	_
REPUBLIC (1972)							
Trip 1	_	.008		.014	_	_	.017
Trip 2	—	.047	_	.072		—	.076
SEAPAK							
Trip 1	.007	.009	.008		_		_
Trip 2	.031	.036	.042	_	_	_	-
CAPE BEALE							
Trip 1	.074	.099	.085	_	_	<u> </u>	—
Trip 2	.008	.012	.009	_	_	—	_
ALASKA QUEEN II		_	.013	_	_	.013	.015
REPUBLIC (1973)							
Trip 1	—	.063	—	.102	-	.100	.125
Trip 2	_	.064		.073	_	.106	.064

Table	6	Catch	ner	hook	in	number	of	halihut	
Lavic	υ.	Catter	DCI	HOUK	111	numper	UL.	nanoui	٠

ADLE UNE	· ALL C	KUIJEJ CI	040 THED								
HCOK Comb	< 75	DEPTH IN 75-125	FATHOMS > 125	TOTAL	12	18	HDOK 21	SPA c ing 24	IN FEET 36	42	TOTAL
88	2819	8228	2781	13828	7667	1140	3883	426	421	291	13828
8E	3797	14659	5425	23881	11178	2045	7313	1403	839	1103	23881
8F	624	2057	753	3434	1836	229	936	132	143	158	3434
EB	3823	14913	5373	24109	482	2093	410 7380	48 1436	37 830	50 1103	1082 24109
EF EH	10317 1579 293	4788 2470	2439 1242	8806 4005	20937 3135 1218	9116 998 220	22614 2477 1479	3705 313 183	4495 789 420	7033 1094 485	67900 8806 4005
F8 FE FF	629 1552 516	1951 4794 1035	785 2413 542	3365 8759 2093	1832 3099 814	202 1013	915 2454 502	122 313	132 800	162 1080	3365 8759
FH	44	275	140	459	168	31	143	14	58	45	459
HE HF HH	300 30 16	2568 216 288	1193 162 247	4081 410 551	1286 141 176	218 25 10	1509 130 223	190 14 10	405 54	473	4081 410 551
+TOTAL	26518	99245	42039	167802	65669	17703	52762	8410	5745	13513	167802
888	1457	3245	1168	5870	3355	552	1555	124	204	80	5e70
BBF BBH	219 26	694 198	206	1119 274	647 140	77	308 90	25 11	28	105 34 8	1119 274
BEB	1517	5423	1851	8791	4546	681	2515	517	253	279	8791
BEE	1829	7522	2758	12109	5301	1180	3845	770	397	616	12109
8EF	321	1037	547	1905	929	117	568	68	96	127	1905
Beh	75	495	173	743	309	43	259	26	57		743
BFB	229	798	242	1269	778	67	311	44	92	37	1269
BFE	263	959	375	1597	768	121	472	70	83	83	1597
8FH 8FH	117	209 61	103	429 93	234 41	32 7	106 35	13	19	25 4	429 93
BHB BHE	30 46	226	46 99	302	148 267	21 28	102 247	13 28	24	26	302 620
8HK	5	55	15	75	30	5	27	3	2	7	75
E B B	1113	4116	1347	6576	3522	493	1945	278	170	168	6576
E B E	2322	9064	3432	14818	6492	1420	4583	1013	540	77C	14818
EBF	297	1113	439	1849	919	126	525	93	82	104	1849
EBH	51	488	115	654	276	33	254	31	23	37	654
EEB	1866	7651	2763	1228C	5373	1211	3875	768	420	633	12280
EEE	7130	26641	12909	46688	12917	6910	15957	2515	3217	5172	46688
EEF	954	2996	1462	5412	1704	729	1542	210	497	73C	5412
EEH	184	1560	752	2496	720	146	926	145	243	316	2496
EFB	268	863	409	1540	768	96	449	62	70	95	1540
EFE	992	3078	1603	5673	1845	710	1611	197	540	770	5673
EFF	265	618	318	1201	403	163	296	36	126	177	1201
EFH	32	158	84	274	94	16	83	11		29	274
EHB	47	418	116	581	233	31	219	28	34	36	581
Ehe	211	1702	855	2768	794	164	1021	140	291	358	2768
EHF	19	140	95	254	77	18	77	8	39	35	254
Ehh	9	188	158	355	106	4	148	5	46	46	355
FBB	198	617	206	1021	614	71	254	19	33	3C	1021
FBE	319	1055	469	1843	932	107	542	85	69	108	1843
FBF	97	193	90	380	232	19	79	12	23	15	360
FBH	5	65	15	85	42	1	32	3	3	4	85
FEB	322	1082	482	1886	919	124	553	8C	97	113	1886
FEE	927	2942	1500	5369	1685	723	1512	201	512	736	5369
FEF	247	544	290	1081	382	130	256	20	134	159	1081
Fek	27	160	102	289	83	20	100	6	41	39	289
FFB	120	226	112	458	250	33	123	15	17	20	458
FFE	265	590	310	1165	383	159	275	34	133	181	1165
FFF	124.»	- 172	96	392	155	47	83	6	45	56	392
FFH	1	33	14	48	20	6	14	1	4	3	48
FH8	10 [′]	36	21	67	27	3	27	2	4	4	67
Fhe	25	193	80	298	105	19	93	11	37	33	298
FHF	6	23	21	5C	21	6	12	1	8	2	50
FHH	1	14	15	30	12	1	7	C	7	3	30
HBB	35	203	44	282	146	18	102	3	6	†	282
HBE	45	434	134	613	230	32	240	35	36	40	613
HBF	7	46	17	70	31	5	20	2	8	4	70
HBH	2	47	11	60	21		30	3	3	1	60
HEB	70	568	196	834	342	43	317	43	3¶	50	834
HEE	200	1597	680	2477	738	151	921	131	241	295	2477
HEF	24	159	107	290	94	14	81	10	42	49	290
Heh	4	224	168	416	97	8	167	5	69	70	416

APPENDIX II. HOOK OBSERVATIONS BY DEPTH AND HOOK SPACING (B-BAITED, E-EMPTY, M-MALIBUT, F-OTHER FISH)

55

H D O K C D M B	< 75	DEPTH IN 75+125	FATHOMS > 125	TOTAL	12	18	HOOK 21	SPACINE 24	IN FEET 36	42	TOTAL	
HFB HFE	9 13	45 121	18 105	72 239	32 78	5 14	22 83	10	7 29	25	72 239	
HFH	í	22	17	40	13	1	10	1	7	8	40	
ннв ННЕ НКЕ НКЕ	5 9 1 1	191 16 30	23 145 15 51	345 32 82	23 110 14 27	5 5 0 0	38 132 7 37	0 7 2 1	7 45 3 8	4 46 6 9	77 345 32 82	
*TOTAL	26132	97983	41473	165588	65120	17475	52067	8269	9497	13160	165588	
8888 6666 FFFF HHHH	890 5290 40 0	1507 18957 38 3	593 9537 21 13	2990 33784 99 16	1702 8521 47 5	334 5412 10 0	748 11806 18 6	51 1820 C	130 2373 15 2	25 3852 9 3	2990 33784 99 16	
*TOTAL	6220	20505	10164	36889	10275	5756	12578	1071	2520	3889	36889	
≠SKATES ≠HOOKS	386 26904	1262 100507	566 42605	2214 170016	549 66218	228 17931	695 53457	141 8551	248 5993	353 13866	2214 170016	
≠8 ≠E ≠F ≠H	740 7 16273 2775 449	25970 62489 8173 3875	9216 27613 3928 1848	42593 106375 14876 6172	21283 36918 5960 2057	3512 12589 1512 318	12653 34446 4073 2285	2039 5733 519 260	1469 6718 1216 590	1637 9971 1596 662	42593 106375 14876 6172	
HFX XHH HXH	15 15 7	256 257 293	183 188 216	454 460 516	147 148 131	10 10 11	177 182 207	9 9 9	55 55 79	56 56 79	454 460 516	
X HFX X FHX X HBX X HBX X HEX X HEX X FEX X FBX X BFX X BFX	58 83 174 164 576 563 3016 3047 1231 1222	354 504 1363 1490 4694 4475 9195 9136 3752 3966	286 243 378 351 2017 2093 4560 4560 4528 1528 1455	738 830 1915 2005 7287 7131 16771 16812 6511 6643	254 308 815 902 2340 2216 5982 6031 3574 3578	49 57 110 103 419 422 1967 1967 1945 393 442	239 264 710 757 2680 2602 4679 4722 1758 1801	24 27 83 363 353 602 593 257	95 99 67 674 1499 1463 244 267	77 100 87 811 833 2042 2058 305 298	738 830 1915 2005 7287 7131 16771 16812 6511 6643	
₿уЕуН ВуЕуF	334 1790	2878 6109	833 2721	4045 10620	1657 5235	210 691	1536 3109	191 458	213 497	238 630	4045 10620	
				_								
APPENDIX I TABLE TWO	II. HOO CRUIS	E I (CHE	LSEA)	Y DEPTH	AND HOOK	SPACING	(B=BAITE	D, E=EMPT	Y, H=HAL	.IBUT∌ F	OTHER F	ISH)
APPENDIX I TABLE TWO HOOK COMB	(I. HOO CRUIS < 75	DEPTH IN 75-125	FATHONS B FATHONS > 125	Y DEPTH Total	AND HOOK 12	SPACING 18	(B=BAITE) Hook 21	D, E=EMPT Spacing 24	Y, H=HAL IN FEET 36	1BUT\$ F 42	OTHER F	ISH)
APPENDIX I TABLE TWO HOOK COMB BB BE BF BF BH	(I. HOD CRUIS < 75 683 497 49 12	0K OBSERV SE I (CHE) DEPTH IN 75-125 3721 4521 1088 193	FATHONS B FATHONS 299 93 14	Y DEPTH TOTAL 4597 5317 1230 219	AND HOOK 12 3222 3386 907 150	SPACING 18 0 0 0 0	(B=BAITE) HOOK 21 1375 1931 323 69	D, E=EMPT SPACING 24 0 0 0 0 0 0 0 0	Y, H=HAL IN FEET 36 0 0 0 0	1BUT, F 42 0 0 0 0	•OTHER F TOTAL 4597 5317 1230 219	ISH)
APPENDIX J TABLE TWO. HOOK COMB BE BE BF BF BH EB EE EF EF EH	(I. HOD CRUIS 683 497 49 12 510 1003 53 11	IK OBSERV. IE I (CHE) DEPTH IN 75-125 3721 4521 1088 193 4598 6292 1432 329	ATTONS B LSEA) FATHOMS 125 193 299 93 14 308 464 133 42	Y DEPTH TOTAL 4597 5317 123C 219 5416 7759 1618 382	AND HOOK 12 3222 3386 907 150 3460 4347 1046 240	18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(B=BAITE) HOOK 21 1375 1931 323 69 1956 3412 572 142	D, EHEMPT Spacing 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Y, H=HAL 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18UT, F 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-OTHER F TOTAL 4597 5317 1230 219 5416 7759 1618 382	ISH)
APPENDIX J TABLE TWO HOOK COMB BE BF BF BF EB EF EF FF FF FF FF	(I. HOG CRUIS < 75 683 497 499 12 510 1003 53 11 41 62 7 0	IK OBSERV: E I (CHE) DEPTH IN 75-125 3721 4521 1088 193 4598 6292 1432 329 1074 1411 446 87	A I LUNS B LSEA) FA THOMS > 125 193 299 93 14 308 464 133 42 90 140 47 11	Y DEPTH TOTAL 4597 5317 1230 219 5416 7759 1618 382 1205 1618 382 1205 1618 382	AND HODK 12 3222 3386 907 150 3460 4347 1046 240 885 1054 360 65	18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(B-BAITE) HOUK 21 1375 1931 323 69 1956 3412 572 142 320 559 140 33	D, E=EMPT SPACING 24 0 0 0 0 0 0 0 0 0 0 0 0 0	Y, H=HAL IN FEET 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18UT, F 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•DTHER F TOTAL 4597 5317 1230 219 5416 7759 1618 382 1205 1613 500 98	ISH)
АРРЕNDIX J TABLE TWO. HOOK COMB BE BF BF BF EB EE EF FF FF FF HB HE HF HF HF	(I. HOG CRUIS (75 683 497 12 510 1003 53 11 41 62 7 0 7 14 1 0	IK OBSERV: E I (CHE) DEPTH IN 75-125 3721 4521 1088 193 4598 6292 1432 329 1074 1411 446 87 153 369 1074	A 11 UNS B LSE A) FA THOMS > 125 193 299 93 14 308 464 133 42 90 140 464 133 42 90 140 140 290 140 200 140 200 140 200 125 125 125 125 125 125 125 125	Y DEPTH TOTAL 4597 5317 123C 219 5416 7759 1618 382 1205 1618 382 1205 1618 350C 98 172 452 755 14	AND HODK 12 3222 3386 907 150 3460 4347 1046 240 885 1054 360 65 107 292 53 10	18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(B-BAITE) HOUK 21 1375 1931 323 69 1956 3412 572 142 320 559 140 33 65 160 22 4	D, E = EMPT SPACING 24 0 0 0 0 0 0 0 0 0 0 0 0 0	Y, H-HAL IN FEET 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18UT, F 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•DTHER F TOTAL 4597 5317 1230 219 5416 7759 1618 382 1205 1618 382 1205 1618 3500 98 172 452 75 14	15H)
APPENDIX J TABLE TWO. HOOK COMB BE BE BF BH EB EF EH FE FF FF FF HB HE HF HF HF	(I. HOG CRUIS (75 683 497 12 510 1003 53 11 41 62 7 0 7 14 1 0 0 2950	IK OBSERV: E I (CHE) DEPTH IN 75-125 3721 4521 1088 193 4598 6292 1432 329 1074 1411 446 67 153 359 58 12 25814	A I LUNS B LSEA) FA THOMS 125 193 299 93 14 308 464 133 42 90 140 47 11 12 39 16 2 1903	T OTAL 4597 5317 1230 219 5416 7759 1618 382 1205 1613 500 98 172 452 75 14 30667	AND HODK 12 3222 3386 907 150 3460 4347 1046 240 885 1054 360 65 107 292 53 10 19584	18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(B-BAITE) HOOK 21 1375 1931 323 69 1956 3412 572 142 320 559 140 33 65 160 22 4 11083	D, E=EMPT SPACING 24 0 0 0 0 0 0 0 0 0 0 0 0 0	Y, H-HAL IN FEET 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18UT, F 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-OTHER F TOTAL 4597 5317 1230 219 5416 7759 1618 382 1205 1613 500 98 172 452 75 14 30667	ISH)
APPENDIX J TABLE TWO. HOOK COMB BE BF BF BF BF EB EE EF EH FF FF FF HB HE HF HF HE HF HE HF HE HF BBB BBE BBE BBE BBE BBE BBE BBE BBE	<pre>II. HOG CRUIS</pre>	IK OBSERV; E I (CHE) DEPTH IN 75-125 3721 4521 1088 193 4528 193 4598 6292 1432 329 1074 1411 446 87 153 359 1074 1411 446 87 153 359 58 12 25814 1519 1685 430 62	A 11 UNS B LSE A) FA THOMS > 125 193 299 93 14 308 464 133 42 90 140 47 11 12 39 90 140 47 11 12 39 16 29 103 52 1100 26 4 103 52 1100 26 4 103 52 1100 26 4 103 52 1100 26 4 103 105 105 105 105 105 105 105 105	Y DEPTH TOTAL 4597 5317 1230 219 5416 7759 1618 382 1205 1618 382 1618 382 105 1618 382 105 1618 382 105 1618 382 105 1618 382 105 1618 382 105 1618 382 105 1618 382 105 1618 382 105 1618 382 105 1618 382 105 1618 382 105 1618 105 1618 382 105 1618 105 1618 105 1618 105 1618 105 1618 105 1618 105 1618 105 1618 105 1618 105 1618 105 1618 105 1648 105 165 1648 105 165 1648 105 165 165 165 165 165 165 165 165 165 16	AND HODK 12 3222 3386 907 150 3460 4347 1046 240 885 1054 360 65 107 292 53 10 19584 1464 1340 352 50	18 18 0 0 0 0 0 0 0 0 0 0 0 0 0	(B-BAITE: HOUK 21 1375 1931 323 69 1956 3412 572 142 320 559 140 33 65 160 22 4 11083 550 667 126 18	D, E = EMPT SPACING 24 0 0 0 0 0 0 0 0 0 0 0 0 0	Y, H-HAL IN FEET 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IBUT, F 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-OTHER F TOTAL 4597 5317 1230 219 5416 7759 1616 382 1205 1613 500 98 172 75 14 30667 2014 2007 40 66	ISH)
APPENDIX J TABLE TWO. HOOK COMB BE BF BF BF BF EB EE EF EH FF FF FF HB HE HF HF HE HF HE HF HE BBE BBE BBE BBE BBE BBE BBE BBE BBE	<pre>II. HOG CRUIS</pre>	IK OBSERV; E I (CHE) DEPTH IN 75-125 3721 4521 1088 193 4598 6292 1432 329 1074 1411 446 87 153 359 1074 1411 446 87 153 359 58 12 25814 1519 1685 430 62 2000 1850 492 126	A 11 UNS B LSE A) FA THOMS > 125 193 299 93 14 308 464 133 42 90 140 47 11 12 39 16 2 1903 52 1100 26 4 115 124 4 19 19 19 10 10 10 10 10 10 10 10 10 10	Y DEPTH TOTAL 4597 5317 1230 219 5416 7759 1618 382 1205 1618 382 105 1618 382 105 1618 382 105 1618 382 105 1618 382 105 1618 382 105 1618 382 105 1618 382 105 1618 382 105 1618 382 105 1618 382 105 1618 382 105 1618 382 105 1618 105 1618 382 105 1618 105 1618 105 1618 105 1618 105 1618 105 1618 105 1618 105 1618 105 1618 105 1618 105 1618 105 1618 105 1618 105 1618 105 1618 105 1618 105 1618 105 1618 105 164 105 105 164 105 164 105 164 105 164 105 164 105 164 105 164 105 164 105 164 105 164 105 164 164 105 164 164 105 164 164 165 165 165 165 165 165 165 165 165 165	AND HODK 12 3222 3386 907 150 3460 4347 1046 240 885 1054 360 65 107 292 53 10 19584 1464 1340 352 50 1513 1369 378 100	18 0	(B-BAITE: HOUK 21 1375 1931 323 69 1956 3412 572 142 320 559 140 33 65 160 22 4 11083 550 667 126 18 822 854 18	D, E = EMPT SPACING 24 0 0 0 0 0 0 0 0 0 0 0 0 0	Y, H-HAL IN FEET 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IBUT, F 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-OTHER F TOTAL 4597 5317 1230 219 5416 7759 1616 382 1205 1613 500 98 1752 755 14 30667 2014 2007 476 68 2335 2223 5223 5223 5223 5223 5223 522	ISH)
APPENDIX J TABLE TWO. HOOK COMB BE BF BF BF BF FF FF FF FF FF HB HE HF HF HF HF HF HF HF HF HF HF HF HF HF	<pre>II. HOG CRUIS</pre>	IK OBSERV; E I (CHE) DEPTH 125 3721 4521 1088 193 4521 1088 193 4598 6292 1432 329 1074 1411 446 87 153 359 1074 1411 446 87 153 359 1074 1411 446 87 153 359 10 25814 1519 1685 430 62 2000 1850 492 126 480 432 134 31	A 11 UNS B LSE A) FA THOMS Y 125 193 299 93 14 308 464 133 42 90 140 47 11 12 39 16 2 1903 52 1100 26 4 15 124 19 37 39 37 39 14 37 39 37 39 14 37 39 37 39 37 39 37 39 37 39 37 37 39 37 37 39 37 37 37 37 37 37 37 37 37 37	Y DEPTH TOTAL 4597 5317 1230 219 5416 7759 1618 382 1205 1618 3500 452 105 1618 3500 455 1618 3500 455 1618 3500 455 1618 3500 455 1618 3500 455 1618 3500 455 1618 3500 455 1618 3500 455 1618 3500 455 1618 3500 455 1618 3500 455 1618 3500 455 1618 3500 455 1618 355 1618 3500 455 1618 355 1618 1618 1618 1618 1618 1618 1618 16	AND HODK 12 3222 3386 907 150 3460 4347 1046 240 885 1054 360 65 107 292 53 10 19584 1464 1340 352 50 1513 1369 378 100 417 344 120 21	18 0	(B=BAITE) HOUK 21 1375 1931 323 69 1956 3412 572 142 320 559 140 33 65 160 22 4 1083 550 160 22 4 1083 550 160 22 4 1083 550 160 22 4 11083 550 126 126 18 854 126 18 854 126 126 13 13	D, E = EMPT SPACING 24 0 0 0 0 0 0 0 0 0 0 0 0 0	Y, HHAL IN FEET 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IBUT, F 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-OTHER F TOTAL 4597 5317 1230 219 5416 7759 1618 382 1205 1613 500 98 172 452 755 14 30667 2014 2007 478 68 2335 2223 5223 5223 478 461 146 542 491	ISH)
APPENDIX J TABLE TWO. HOOK COMB BB BF BF BF BF FF FF FF FF FF HB HE HF HF HF HF HF HF HF HF HF HF HF HF HF	<pre>II. HOG CRUIS < 75 683 497 12 5100 1000 1001 53 11 41 622 7 7 14 41 622 225 2200 2499 212 220 2499 212 220 249 212 220 249 212 200 249 0 3 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	INC OBSERV. E I CCHEI DEPTH IN 75-125 3721 4521 1088 193 4598 6292 1432 329 1074 1411 446 87 153 359 58 12 25814 1519 1685 430 62 2000 1850 432 126 480 432 126 480 431 113 125	A 11 UNS B LSEA) FA THOMS Y 125 193 299 93 14 308 464 133 42 90 140 464 133 42 90 140 464 133 42 90 140 467 11 12 39 90 140 464 133 42 90 90 140 464 133 42 90 90 140 464 133 42 90 90 140 125 193 299 93 14 40 125 193 299 93 14 40 125 193 299 93 14 40 125 103 464 133 42 90 140 125 103 299 90 140 125 103 290 90 140 125 104 105 106 464 133 42 90 140 127 107 107 107 107 107 107 107 10	Y DEPTH TOTAL 4597 5317 1230 219 5416 7759 1618 382 1205 1618 382 1205 1618 385 1205 1618 398 4522 75 14 30667 2014 20067 478 2335 2223 146 8 2335 2253 146 542 478 152 253 146 542 491 152 55 55 146 542 55 55 146 55 55 55 55 55 55 55 55 55 55 55 55 55	AND HODK 12 3222 3386 907 150 3460 4347 1046 240 885 1054 360 65 107 292 53 10 19584 1464 1340 19584 1464 1340 19584 1464 1340 417 348 100 417 346 03	18 0 0 0	(B=BAITE) HOUK 21 1375 1931 323 69 1956 3412 572 142 320 559 140 33 65 160 22 4 1083 550 160 22 4 11083 550 160 22 4 11083 550 140 126 18 822 854 176 125 147 126 18 822 854 176 125 132 13 22 39 55 2	D, E = EMPT SPACING 24 0 0 0 0 0 0 0 0 0 0 0 0 0	Y, H=HAL IN FEET 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IBUT, F 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-OTHER F TOTAL 4597 5317 1230 219 5416 7759 1618 382 1203 1618 382 1203 1618 382 1203 1618 382 1203 1618 382 1203 1618 382 1203 1618 3667 2014 2007 478 68 2335 2223 2554 146 542 478 155 5 5	ISH)

APPENDIX II. HOOK OBSERVATIONS BY DEPTH AND HOOK SPACING (B=BAITED, E=EMPTY, F=HALIBUT, F=OTHER FISH) TABLE ONE. ALL CRUISES COMBINED ---

e

HOOK Comb	< 75	DEPTH IN 75-125	FATHOMS > 125	TOTAL	12	18	HOCK 21	SPACING 1 24	LN FEET 36	42	TOTAL
EEB EEE EEF EEH	267 684 27 9	1911 3454 684 158	136 241 61 18	2314 4379 772 105	1426 2289 470 107	0 0 0	888 2090 302 78	0 0 C C	с 0 0	с с с	2314 4375 772 185
EFB Efe Eff Efh	13 38 2 0	422 740 216 38	34 69 22 7	469 847 240 45	326 516 164 31	0 0 0	143 331 76 14	с с с	0 0 0	0 0 0 0	469 847 240 45
EHB EHE EHF EHH	4 6 0 0	68 211 37 7	0 25 8 1	8C 242 45 8	50 149 31 6	0 0 0 0	30 93 14 2	с с с	с 0 0	с с с	80 242 45 8
F8B F8E F8F F8H	16 18 5 2	407 516 115 25	28 39 20 2	451 573 140 29	336 405 116 21	0 0 0	115 168 24 8	с с с	0 0 0	0 C C 0	451 573 140 29
FEB FEE FEF FEH	16 41 4 1	495 652 207 37	36 74 26 3	547 767 237 41	383 472 159 28	0 0 0	164 295 78 13	с с с	0 0 0	с с с	547 767 237 41
FFB FFE FFF FFH	2 4 1 0	149 198 84 13	14 21 9 1	165 223 94 14	123 159 65 10	0 0 0	42 64 29 4	с с с	0 0 0	0 C 0 0	165 223 94 14
FHB FHE FHF FHH	0000	17 62 8 0	1 4 5 1	18 66 13 1	8 45 11 1	0 0 0	10 21 2 0	с с с	0 0 0	0 C 0	18 66 13 1
HBB HBE HBF HBH	2 4 0 0	54 74 18 6	4 5 3 0	6C 83 21 6	43 41 17 5	0 0 0	17 42 4 1	0 C C C	0 0 0	C 0 0 0	60 83 21 6
HEB HEE HEF HEH	4 10 0 0	143 205 39 7	16 18 4 0	163 233 43 7	107 146 30 3	0 0 0	56 87 13 4	0 C C C	0 0 0	C C C C	163 233 43 7
KFB HFE HFF HFH	1 0 0	18 27 8 5	5 9 2 0	24 36 10 5	16 25 9 3	0 0 0	8 11 1 2	с с с	0 0 0	с с с	24 36 10 5
HHB HHE HHF HHH	0 0 0	4 8 0 0	0 1 1 0	4 9 1 C	4 5 1 0	0 0 0	0 4 0 0	0 C C	0 0 0	с с с	4 9 1 0
+TOTAL	2919	25547	1883	30349	19422	0	10927	c	0	٥	30349
8888 EEEE FFFF HHHH	316 501 0 0	685 2062 23 0	15 128 2 0	1016 2691 25 0	770 1309 17 0	0 0 0	246 1382 8 0	с с с	0 0 0	0 0 0 0 0 0	1016 2691 25 0
*TOTAL	817	2770	145	3732	2096	0	1636	c	0	C	3732
≠SKATES ≠HOOKS	31 2981	267 26081	20 1923	318 30985	162 19746	0	156 11239	C C	0	o c	318 30985
#8 #E #F #H	1249 1599 110 23	9590 12814 3047 630	806 957 291 69	11445 15370 3448 722	7706 9192 2381 467	0 0 0	3739 6178 1067 255	с с с	0 0 0	с 0 с с	11445 15370 3448 722
ннх хнн нхн	0 0 0	12 12 18	2 2 0	14 14 18	10 10 11	C O O	4 4 7	с с с	0 0 0	0 0 0	14 14 18
XHFX XFHX XHBX XBHX XHEX XFHX XFFX XFBX XFBX XBFX	2 0 13 24 28 21 123 105 79 98	110 169 292 370 637 2724 2761 2089 2112	31 21 28 76 81 265 253 172 179	143 190 329 422 877 739 3112 3119 2340 2389	102 126 204 289 568 465 2033 2013 1723 1768	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	41 64 125 133 309 274 1079 1106 617 621	0 0 0 0 0 0 0 0 0	000000000		143 190 329 422 077 739 3112 3119 2340 2389
ВуЕуН ВуЕуF	2 9 110	621 2878	65 232	715 3220	461 2255	0 0	254 965	C O	0	C C	715 3220

APPENDIX II. HOOK OBSERVATIONS BY DEPTH AND HOOK SPACING (B=BAITED, E=EPPTY, H=HALIBUT, F=OTHER FISH) TABLE TWO. CRUISE I (CHELSEA)

÷

2

=----

_

57

HOUR • DEFFH 10 TODE SPACINE IN FACTORS 10 FEET 42 TOTE 80 762 5002 0 7276 122 10 220 442 0 0 15 80 133 533 0 524 120 1403 0 0 0 17 80 133 533 0 524 290 1407 1403 1302 0 0 0 17 80 133 333.5 0 1108 1221 1409 1002 1438 0 0 0 17 81 140 531 0 1003 1003 1003 1003 100 0 100												
B TO2 CO22 CO22 CO22 CO22 CO22 CO22 CO22 CO22 CO22 CO2 CO22 CO22 CO2 CO22 CO2 CO22 CO2 CO22 CO2 CO2 <thco2< th=""> <thco2< th=""> <</thco2<></thco2<>	HOOK Comb	< 75	BEPTH IN 75-125	FATHOMS > 125	TOTAL	12	18	H00K 21	SPACINE 24	IN FEET 36	42	TOTAL
BE 1620 32211 0 7125 32303 1374 1600 1425 0 0 1 BE 1333 422 0 530 188 199 27 222 44 0 0 1 E4 4733 3807 3703 0 0 1776 6729 4373 3807 3703 0 0 1 188 E4 4733 3807 3703 0 0 1776 6729 4373 3807 3703 0 0 1 188 3807 3703 0 0 0 1 18 3807 3703 0 0 160 18 160 0 0 17 18 3807 3703 370 0 16 <td></td> <td>702</td> <td>2082</td> <td>•</td> <td>2784</td> <td>1 5 0 1</td> <td>407</td> <td>200</td> <td>1.94</td> <td>•</td> <td></td> <td></td>		702	2082	•	2784	1 5 0 1	407	200	1.94	•		
BF 1.33 1.422 0 361 250 1.54 0.79 1.322 0 0 0 88 1.93 1.335 0 1.46 99 27 22 44 0 0 0 1 88 1.933 1.336 0 1.4764 277 22 44 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1	86	1868	5241	Ň	7129	3283	1296	1049	1403	č	, L	7120
Bit 133 1133 0 1166 126 27 22 144 0 0 1 E.B. 11933 13205 0 1106 1206 1209 1	RF	139	422	ŏ	561	250	1374	1049	132	ŏ	ŏ	561
E6 1953 5545 0 1296 2021 1480 1962 1485 0 0 11701 EF 1460 1326 0 0 0 0 0 0 0 0 0 0 0 1440 1186 0<	вн	33	153	ŏ	186	89	27	22	48	ŏ	ŏ	186
E 1893 13440 0 7148 3221 1400 1062 14360 0 0 171 EF 1363 1320 0 0 171 1833 0 0 0 171 EF 136 531 0 0 0 160 111 113 113 0 0 0 171 EF 100 1208 0 166 0 200 34 326 1333 0 0 1 1 FF 10 140 0 0 200 21 18 10 14 0 0 12 13 10 14 0 0 0 12 13 10 14 0 0 0 12 13 10 14 12 14 10 0 0 12 11 11 12 13 11 11 11 11 <th11< th=""> 11 <th< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td></th<></th11<>				_					_			
Ep 4735 13000 0 14700 6729 4373 3407 3103 0 0 147 FH 146 3375 0 6477 250 146 116 1122 0 0 147 FH 110 3375 0 1266 350 357 0 0 14 FH 101 1347 0 1266 350 357 0 0 14 FH 101 357 0 657 211 161 122 14 0 0 0 14 ME 36 148 0 0 7 14 0 0 0 14 14 14 14 0 0 0 14 14 14 14 14 14 14 14 14 0 0 0 14	EB	1853	5345	0	7198	3291	1409	1062	1436	0	0	7198
E.F. Yes Yes <thyes< th=""> <thyes< th=""></thyes<></thyes<>	EE	4735	13969	0	18704	6729	4373	3897	3705	0	0	18704
En 140 321 0 0.77 140 118 118 0 0 0 0 FE 100 1208 0 1668 659 314 356 313 0 0 0 16 FF 100 1270 0 224 121 18 10 14 0 0 0 16 FF 100 140 0 204 68 34 22 444 0 0 2 HE 141 560 0 701 248 141 122 140 0	61	493	1200	o o	1701	677	345	366	313	0	ç	1701
FB 165 376 G 551 225 77 86 122 0 0 16 FF 101 147 0 246 102 34 350 371 0 0 0 12 HB 36 144 10 144 0 0 0 246 112 141 122 0 0 0 2 HB 36 146 0 0 204 98 344 350 137 0 0 0 7 HB 36 146 0 0 204 98 34 258 344 350 137 0 0 244 HB 36 1374 0 42473 1755 8447 7561 6410 0 0 131 BBB 20 93 0 113 54 12 12 10 0 0 113 54 12 12 10 0 133 12 0 0 133 12	E H	140	551	0	041	250	140	118	183	0	0	697
FF 100 10	69	145	274	•	543	254	**		1 2 2	•	•	
FF 101 1147 0 224 102	FF	460	1208		1668	453	344	358	212	Ň	ŏ	144
FH 10 16 14 0 0 21 18 16 14 0 0 2 HB 36 146 0 204 98 34 28 446 0 0 7 HF 100 557 0 77 22 144 127 174 0 0 7 HF 100 557 0 42473 17555 8947 7561 8410 0 0 424 886 200 744 0 1556 8957 2261 175 225 0 0 11 886 200 113 54 122 22 22 0 0 13 886 770 10 3996 113 54 13 660 0 39 816 40 104 0 144 77 20 21 26 0 0 13 816 20 77 0 79 24 20 27 44 0 <td>FF</td> <td>101</td> <td>147</td> <td>ŏ</td> <td>248</td> <td>102</td> <td>39</td> <td>50</td> <td>57</td> <td>ŏ</td> <td>č</td> <td>248</td>	F F	101	147	ŏ	248	102	39	50	57	ŏ	č	248
HB 16 0 16 <th16< th=""> 16 16 16<td>FH</td><td>10</td><td>59</td><td>ŏ</td><td>69</td><td>21</td><td>18</td><td>16</td><td>14</td><td>ŏ</td><td>ŏ</td><td>69</td></th16<>	FH	10	59	ŏ	69	21	18	16	14	ŏ	ŏ	69
HB 36 168 0 204 98 34 28 44 0 0 0 7 HH 11 30 0 41 15 15 15 15 16 0 0 7 HH 12 30 0 45 115 15 17 16 0 0 424 BBB 270 74 0 42473 17555 8947 7561 6410 0 0 424 BBB 270 744 0 1054 65215 770 16 0 17 BBF 20 93 0 113 22 4 4 11 0 0 12 BEF 979 3017 0 3956 1706 0 17 20 27 44 0 0 33 13 0 0 33 13 0 0 33 13 0 0 33 13 0 0 33 13 0 0 13										-	•	• • •
HE 141 550 0 701 248 141 122 190 0 0 7 HH 7 28 0 35 15 5 3 16 0 0 4 HH 7 28 0 35 15 5 3 16 0 0 4 HE 300 153 0 42473 17555 8447 756 8410 0 0 16 BBB 8 330 0 141 222 12 4 110 0 1 1 1 1 1 1 1 0 0 1 3 1 0 0 1 3 1 0 0 1 3 3 1 0 0 1 3 3 1 0 0 1 3 3 1 0 0 1 3 3 1 0 0 1 3 3 1 0 0 1 3 3 1	HB	36	168	0	204	98	34	28	44	0	0	204
HF 10 37 0 47 12 14 7 14 0 0 *TOTAL 10699 \$1574 0 42473 17555 8947 7561 8410 0 0 424 888 270 784 0 1054 656 215 79 124 0 0 10 888 20 933 0 411 22 4 424 11 0 0 12 886 766 1861 0 2387 1266 479 305 517 0 0 .28 865 766 1861 0 0 29 27 44 0 0 .12 867 10 0 12 5 3 1 0 0 1 876 47 143 0 106 00 29 27 44 0 0 1 877 70 0 07 38 9 7 13 0 0 1	HE	141	560	0	701	248	141	122	190	0	0	701
HH 7 28 0 35 15 5 5 10 0 0 *TGTAL 10899 31574 0 42473 17555 8947 7561 8410 0 0 424 BBE 20 93 0 113 54 12 22 25 0 0 113 BBF 5 3017 0 32567 1266 479 9355 317 0 0 423 BEE 979 3017 0 3996 114 22 4 4 11 0 0 33 BEF 68 224 0 3922 144 866 60 770 0 0 423 BFF 40 104 0 144 77 20 21 24 0 0 13 BFF 19 22 0 12 5 3 15 13 28 0 0 0 13 BFF 19 23 10 1	HF	10	37	0	47	12	14	7	14	C	0	47
+TOTAL 10899 \$1574 0 42472 17555 8947 7561 8410 0 0 4244 886 270 784 0 1054 636 215 79 124 0 0 105 886 200 93 0 113 54 12 22 22 23 0 0 125 886 720 1601 0 2587 1266 479 3005 517 0 0	нн	7	26	0	35	15	5	5	10	C	0	35
Hom 10079 11077 10074 0 10074 0 10074 0 <th0< th=""></th0<>	****	10900	\$1576	•	42472	17666	8047	7643	9630	•	•	1
B88 270 784 0 1054 636 213 79 124 0 0 10 B87 20 93 0 1135 54 12 22 25 0 0 15 B88 8 33 0 41 22 4 4 11 0 0 -7 B65 776 1661 0 2387 1266 4178 3055 517 0 0 -7 28 B65 976 3010 0 2287 146 80 660 760 0 0 33 B67 46 10 0 144 77 20 27 44 0 0 0 33 B67 19 23 0 12 5 3 11 0 0 0 13 B76 19 23 0 12 5 3 13 13 23 0 0 0 14 25 13 13 0 0	TUTAL	10044	91374	Ű	.92973	11222	0947	1201	0410	U	U	42473
BARF 20 1136 0 1135 554 12 22 22 22 23 0 0 113 BBRF 8 33 0 41 22 4 4 11 0 0 133 54 112 22 22 25 0 0 0 BBRF 8 33 0 411 22 4 4 11 0 0 BEF 72 1611 0 2387 1286 479 305 517 0 0 358 BEF 47 143 0 190 212 26 0 3 3 1 0 0 1 3 3 1 0 0 3 3 1 0 0 3 3 1 0 0 0 3 3 1 0 0 0 3 3 1 </td <td>BBB</td> <td>270</td> <td>784</td> <td>٥</td> <td>1054</td> <td>434</td> <td>215</td> <td>79</td> <td>124</td> <td>n</td> <td>0</td> <td>1054</td>	BBB	270	784	٥	1054	434	215	79	124	n	0	1054
BBF 20 93 0 113 94 12 22 2 25 0 0 1 BEE 720 1861 0 2387 1266 479 305 517 0 0 -25 BEE 979 3017 0 3992 1748 818 660 770 0 0 -39 BFF 47 143 0 144 77 20 21 26 0 0 1 BFF 46 238 0 304 131 44 57 70 0 0 3 BFF 10 57 0 67 38 13 13 28 0 0 14 BHF 20 79 0 97 43 15 13 28 0 0 15 BHF 210 0 122 5 3 0 0 0 15 13 16 0 0 16 16 16 16 16 16 <td>BBE</td> <td>398</td> <td>1158</td> <td>ŏ</td> <td>1556</td> <td>859</td> <td>261</td> <td>175</td> <td>261</td> <td>ŏ</td> <td>ŏ</td> <td>1556</td>	BBE	398	1158	ŏ	1556	859	261	175	261	ŏ	ŏ	1556
BBH B 33 0 41 22 4 4 11 0 0 BEE 726 1861 0 2587 1286 479 305 517 0 0	88F	20	93	0	113	54	12	22	25	ō	0	113
BEB TZC 1861 0 2587 1266 479 305 517 0 0 - 25 BEE 979 3017 0 3952 1746 816 660 770 0 0 - 39 BEE 979 3017 0 3952 1746 816 660 770 0 0 1 BFE 68 238 0 306 131 46 577 70 0 0 3 BFF 68 238 0 306 131 46 577 70 0 0 3 BHE 20 79 0 97 43 13 13 28 0 0 0 0 15 BHE 20 79 0 97 43 13 13 28 0 0 0 0 0 15 5 3 0 0 0 <	BBH	B	33	o	41	22	4	4	11	Ó	C	41
BEE 726 1861 0 2587 1266 479 305 517 0 0 .53 BEF 98 224 0 322 148 60 46 68 0 0 33 BFF 98 224 0 322 148 60 46 68 0 0 33 BFF 140 104 0 144 77 20 21 226 0 0 13 BFF 19 25 0 44 20 3 8 13 0 0 0 3 3 1 0 0 0 3 3 1 0 0 0 3 0 0 0 3 3 1 0 0 0 3 0 0 3 0 0 0 3 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-					-					
BEF 979 3017 0 3976 1746 818 660 770 0 0 35 BEF 98 224 0 322 148 00 40 680 0 35 BFF 40 104 0 144 77 20 21 22 0 0 1 BFF 66 238 0 304 131 446 57 76 0 0 1 BFF 19 225 0 47 38 13 0 0 0 0 131 328 0 <th< td=""><td>8EB</td><td>726</td><td>1861</td><td>Q</td><td>2587</td><td>1286</td><td>479</td><td>305</td><td>517</td><td>Q</td><td>0</td><td>. 2587</td></th<>	8EB	726	1861	Q	2587	1286	479	305	517	Q	0	. 2587
br. vs 2.2. vs 3.2. 140 00 40 08 08 0 0 3 BF6 40 104 0 144 77 20 21 226 0 0 1 BFF 19 25 0 44 20 3 6 13 0 0 3 BFF 19 25 0 44 20 3 6 13 0 0 3 BHF 10 57 0 67 38 9 7 13 0 0 0 0 0 0 2 3 0 0 0 0 0 0 2 0 <t< td=""><td>BEE</td><td>979</td><td>3017</td><td>0</td><td>3996</td><td>1748</td><td>818</td><td>660</td><td>770</td><td>Q</td><td>0</td><td>3996</td></t<>	BEE	979	3017	0	3996	1748	818	660	770	Q	0	3996
BEFR 40 104 0 144 17 20 21 26 0 0 1 BFE 66 238 0 306 131 46 57 70 0 0 0 3 BFF 19 25 0 44 20 3 8 13 0 0 0 3 BHB 10 57 0 67 38 9 7 13 0 0 0 0 0 3 8 13 13 0 0 0 0 0 0 12 5 3 0 4 0 0 0 0 0 0 12 5 3 0 4 0	BEF	48	224	U	322	148	60	40	68	0	0	322
BFE 47 143 0 130 90 20 27 44 0 0 1 BFF 19 235 0 344 131 49 57 700 0 0 3 BFF 210 0 122 5 3 3 1 0 0 0 3 BHE 20 79 0 96 43 15 13 28 0 <t< td=""><td>067</td><td>40</td><td>104</td><td>U</td><td>144</td><td></td><td>20</td><td>21</td><td>26</td><td>0</td><td>U</td><td>144</td></t<>	067	40	104	U	144		20	21	26	0	U	144
SPEE 16 238 0 306 131 16 57 70 0 0 13 BFF 19 25 0 366 131 16 0 0 13 0 0 0 13 0 <td< td=""><td>RFR</td><td>47</td><td>143</td><td>0</td><td>190</td><td>90</td><td>29</td><td>27</td><td>44</td><td>•</td><td>6</td><td>100</td></td<>	RFR	47	143	0	190	90	29	27	44	•	6	100
BFF 10 225 0 44 20 3 1 10 0 0 BFH 2 10 0 12 5 3 3 1 0 0 BHE 20 79 0 96 43 15 13 28 0 0 BHF 0 7 0 70 70 20 2 3 0 0 0 15 BHF 0 116 0 157 0 70 70 0 70 0 105 2134 1050 0 0 15 BHF 210 0 12751 1050 788 1013 0 0 10 105 1050 1050 1050 105 105 105 105 105 105 105 105 105 105 105 105 110 105 105 110 105 105 105	AFF	68	238	õ	306	1 3 1	48	57	70	Ň	ň	206
BFH 2 10 0 12 5 3 3 1 0 0 BHB 10 57 0 67 38 9 7 13 0 0 BHF 0 7 0 7 2 0 2 3 0 0 0 BHF 0 7 0 7 2 0 2 3 0	BFF	19	25	ŏ	44	20	3	, a	13	ň	ő	44
BHB 10 57 0 67 38 9 7 13 0 0 BHF 20 79 0 97 43 15 13 28 0 0 BHF 2 10 0 12 5 3 0 4 0 0 BHF 2 10 0 12 5 3 0 4 0 0 15 BHF 2 10 0 12 5 3 0 4 0 0 15 E8E 101 1169 0 137C 834 254 258 160 278 0 0 15 E8E 987 3049 0 4036 1771 836 661 766 0 0 102 1277 E6E 3222 987 3049 0 403 134 108 83 145 0 0 112 EFF 325 646 0 1171 454 259 251	BFH	2	10	ŏ	12	5	ž	š	ĩ	ă	ŏ	12
BHB 10 57 0 67 38 9 7 13 0 0 BHF 0 7 0 7 2 0 2 3 0 0 BHF 0 7 0 7 2 0 2 3 0 0 0 BHF 0 7 0 7 2 0 2 3 0 0 0 BHF 0 7 0 76 103 0 0 15 16 0 0 0 15 16 0 0 0 15 16 0 0 0 15 16 0 0 0 0 0 0 0 0 0 0 0 0 0 15 16 0 0 16 17 18 16 0 12 15 13 16 0 12 12 12 12 12 12 12 12 12 12 12 12 12 12<		-						-	-	•	-	
BHE 20 79 0 95 43 15 13 28 0 C BHH 2 10 0 12 5 3 0 4 0 C BBB 401 1169 0 127 5 3 0 4 0 C EBB 1315 3730 0 5045 2194 1050 788 1013 0 0 10 EBB 987 3044 0 4036 1771 836 661 766 0 407 EEH 320 946 0 12751 4203 3122 2221 2515 0 0 10 EEH 320 9464 0 12751 4203 3122 2261 1976 0 0 112 EEH 323 96 0 1270 52 221 1977 0 111 19 0 0	внв	10	57	0	67	38	9	7	13	0	0	67
BHF 0 7 0 7 2 0 2 3 0 4 0 0 E86 401 1169 0 197C 894 258 180 276 0 0 50 E8F 99 2289 0 386 104 66 65 93 0 C 3 E8F 99 2289 0 326 1771 896 661 766 0 0 12 EEE 3282 9469 0 12751 1273 3122 2212 2515 0 0 140 EEE 3282 9469 0 12751 1264 108 83 125 0 0 140 EEF 320 865 0 1273 136 440 108 83 135 0 0 11 EFF 36 0 120 52 22 117	BHE	20	79	0	99	43	15	13	28	0	C	99
BHH 2 10 0 12 5 3 0 4 0 C E8E 1315 3730 0 197C 894 258 180 276 0 0 155 E8F 99 209 0 308 164 66 65 93 0 C 3 E6H 23 103 0 126 58 22 15 31 0 0 127 E4E 3282 9469 0 12751 4293 3122 2821 2515 0 0 127 E4F 320 865 0 1185 448 250 277 210 0 0 117 E4F 91 198 0 286 136 41 90 211 0 0 117 EFF 64 90 0 120 52 222 18 28 0 0 1<1	BHF	0	. 7	0	7	2	0	2	3	0	C	7
EBB 401 1169 0 197C 894 258 180 278 0 0 150 EBF 99 228 0 3645 2194 1050 788 1013 0 0 150 EBH 23 103 0 1265 58 22 15 31 0 0 13 EEE 320 0.463 1271 4293 3122 2211 2515 0 0 146 EEE 320 865 0 1185 448 250 277 21C 0 0 16 EFF 320 865 0 1185 448 250 277 21C 0 0 16 EFF 321 846 0 1271 454 259 261 147 0 0 11 EFF 322 846 0 1270 52 22 18 26 0 0 11 EFF 91 148 0 52 11	енн	2	10	a	12	5	3	o	4	C	C	12
EBB TOTA LASS C LOTA LOSS LOS		601	1140	•	1870		250	1.00		•	•	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	500	1215	2730	č	5045	2104	1050	788	1012	ů,	0	1570
EEH 23 103 0 120 156 22 15 31 0 0 1 EEE 3282 9469 0 4036 1771 836 661 766 0 0 121 EEE 3282 9469 0 12751 4293 3122 2211 2315 0 0 121 EEF 320 865 0 1185 448 250 12 0 0 14 EFE 325 846 0 1171 454 108 83 145 0 0 1 EFF 64 99 0 163 64 30 33 36 0 0 1 EFF 64 99 0 163 64 30 33 36 0 0 1 EFH 10 410 0 920 182 110 88 140 0 <t< td=""><td>FRE</td><td>100</td><td>289</td><td>ŏ</td><td>388</td><td>166</td><td>66</td><td>65</td><td>03</td><td>ŏ</td><td>č</td><td>386</td></t<>	FRE	100	289	ŏ	388	166	66	65	03	ŏ	č	386
CLL LL LL <thl< th=""> LL <thl< th=""> L</thl<></thl<>	FBH	23	103	ŏ	126	58	22	15	ล์เ	ŏ	ŏ	126
EEE 987 3049 0 4036 1771 836 664 766 0 0 407 EEE 3282 9465 0 12751 4293 3122 2821 2815 0 0 127 EEF 320 865 0 1185 448 250 277 216 0 0 111 EEF 325 846 0 1171 454 259 261 197 0 0 11 EFF 325 846 0 1171 454 259 261 197 0 0 11 EFF 325 846 0 120 52 22 18 28 0 0 1 EFF 64 99 0 163 64 30 33 36 0 0 1 EFF 10 410 0 520 122 120 18 14 16 0 0 1 EHF 10 31 0 50 </td <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td>•••</td> <td></td> <td>•</td> <td>•</td> <td>110</td>				•				•••		•	•	110
EEE 3262 9469 0 12751 4293 3122 2821 2515 0 0 117 EEH 320 865 0 1185 448 250 277 210 0 0 44 EFF 325 846 0 1171 454 259 261 197 0 0 11 EFF 325 846 0 1171 454 259 261 197 0 0 11 EFF 6 42 0 44 11 12 11 0 0 11 EFF 6 42 0 44 11 12 11 0 0 0 12 110 0 0 12 110 0 0 12 110 0 0 0 111 110 0 0 0 12 19 2 5 0 0 0 0	£ E B	987	3049	0	4036	1771	836	661	768	0	0	4036
EEF 320 865 0 1185 448 250 277 21C 0 0 14 EFB 91 198 0 285 136 41 50 62 0 0 4 EFF 325 846 0 1171 454 259 261 197 0 0 11 EFF 64 99 0 163 64 30 33 36 0 0 1 EFF 64 99 0 163 64 30 33 36 0 0 11 EFF 64 99 0 120 52 22 18 28 0 0 11 EHF 8 22 9 0 15 14 16 0 0 0 17 14 16 0 0 25 0 0 17 EHF 8 21 77 0 96 50 15 14 16 0 0 0	EEE	3282	9469	0	12751	4293	3122	2821	2515	0	C	12751
EEH 93 397 0 490 154 108 83 145 0 0 4 EFE 91 198 0 285 136 41 90 62 0 0 11 EFF 64 99 0 163 64 30 33 36 0 0 11 EFF 64 99 0 120 52 22 18 28 0 0 1 EHE 110 120 52 120 18 28 0 0 1 EHF 8 22 0 30 6 11 12 0 0 5 EHH 4 17 0 21 9 2 5 5 0 0 5 EHH 4 17 0 21 9 2 5 0 0 5 6 0 0 5 FBF 120 253 0 373 170 55 63 85	EEF	320	865	0	1185	448	250	277	210	0	C	1185
EFB 91 198 0 285 136 41 90 62 0 0 11 EFF 325 846 0 1171 454 259 261 197 0 0 11 EFF 6 42 0 48 14 11 12 11 0 0 1 EHF 6 42 0 48 14 11 12 11 0 0 1 EHF 10 410 0 52 22 18 28 0 0 1 EHF 8 22 9 2 5 5 0 0 EHH 4 17 0 21 9 2 5 5 0 1 1 0 0 0 0 1 1 0<	EEH	93	397	٥	490	154	108	83	145	0	0	490
EFE 325 145 0 257 136 31 36 0 0 11 EFF 64 99 0 163 64 30 33 36 0 0 1 EFH 6 42 0 163 64 30 33 36 0 0 1 EHH 6 42 0 120 52 221 18 28 0 0 1 EHH 110 410 0 520 182 110 88 140 0 0 0 EHH 6 22 0 30 6 11 5 8 0 0 0 EHH 4 17 0 98 50 15 14 19 0 0 0 0 0 13 0 0 0 13 0 0 0 13 0 0 0 13 0 0 13 0 0 0 13 0 0 14 <td>***</td> <td></td> <td></td> <td>•</td> <td>200</td> <td>1.7/</td> <td></td> <td></td> <td></td> <td>•</td> <td>•</td> <td></td>	***			•	200	1.7/				•	•	
EFF 525 636 0 111 454 259 261 191 0 0 111 EFFH 6 42 0 48 14 11 12 11 0 0 11 EFFH 6 42 0 48 14 11 12 11 0 0 11 EFF 64 42 0 48 14 11 12 11 0 0 11 EHF 6 422 0 30 36 16 0 0 1 EHF 8 22 0 30 61 15 61 0 0 1 EHH 4 17 0 21 9 2 5 5 0 0 0 25 FBH 19 31 0 50 15 14 19 0 0 0 11 FBH 19 31 0 50 15 0 0 0 11 10	666	326	140		1171	130	250	263	102	0	, v	289
EFH 6 42 0 103 11 12 11 0 0 0 1 EHB 22 98 0 120 52 22 18 28 0 0 1 EHF 110 410 0 520 182 110 88 140 0 0 5 EHF 4 17 0 21 9 2 5 5 0 0 5 FBF 120 253 0 373 170 55 63 85 0 0 3 FBF 19 31 0 5 0 1 3 0 0 0 3 FEE 300 846 0 1446 428 257 280 0 0 1 1 FEE 300 846 0 53 27 28 20 0 1 1 <tr< td=""><td>666</td><td>525</td><td>040</td><td></td><td>142</td><td>424</td><td>237</td><td>201</td><td>147</td><td>, v</td><td></td><td>11/1</td></tr<>	666	525	040		142	424	237	201	147	, v		11/1
EHB 22 98 0 120 14 12 12 14 0 0 EHF 10 410 0 520 182 22 18 28 0 0 15 EHF 8 22 0 30 6 11 5 8 0 0 15 EHH 4 17 0 21 9 2 5 5 0 0 15 EHH 4 17 0 21 9 2 5 5 0 0 15 EHH 4 17 0 98 50 15 14 19 0 0 0 37 31 0 50 27 4 7 12 0 0 30 0 11 8 0 6 5 0 11 30 0 0 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11	EFF FEH	~	12	ň	103	14	11	12	11	ő	Ň	103
EHB 22 98 0 120 52 22 18 28 0 0 1 EHF 110 410 0 520 162 110 88 140 0 0 0 5 EHF 8 22 0 30 162 11 5 8 0 0 7 EHH 4 17 0 21 9 2 5 5 0 0 0 F8B 120 253 0 373 170 55 63 85 0 0 3 F8F 19 31 0 325 142 47 56 8C 0 0 11 FEE 300 846 0 1146 428 257 260 201 0 0 11 FEE 300 846 0 150 55 35 34 0 0		•		•		• •		•-		•	•	
EHE 110 410 0 920 182 110 86 140 0 0 9 EHH 8 22 0 30 6 11 9 8 0 0 0 F88 21 77 0 98 50 15 14 19 0 0 0 3 F88 120 253 0 373 170 55 63 85 0 0 3 F88 19 31 0 50 27 4 7 12 0 0 0 3 F88 19 31 0 50 27 47 56 86 0 0 13 FE8 82 243 0 325 142 47 56 86 0 0 11 FE8 300 846 0 1146 428 257 260 201	EHB	22	98	0	120	52	22	18	26	0	0	120
EAF 8 22 0 30 6 11 5 8 0 C FBA 17 0 21 9 2 5 5 0 C FBA 12 77 0 98 50 15 14 19 0 C FBA 19 31 0 50 27 4 7 12 0 0 FBA 1 8 0 50 27 4 7 12 0 0 0 FBA 1 8 0 325 142 47 56 8C 0 0 11 FEE 300 846 0 1146 428 257 260 201 0 0 11 FEE 300 846 0 1146 428 257 260 201 0 0 11 FEF 61 79 0 150 55 35 34 0 0 1 FFF 16 <td>EHE</td> <td>110</td> <td>410</td> <td>Ō</td> <td>520</td> <td>182</td> <td>110</td> <td>88</td> <td>140</td> <td>õ</td> <td>õ</td> <td>520</td>	EHE	110	410	Ō	520	182	110	88	140	õ	õ	520
EhH 4 17 0 21 9 2 5 5 0 C F8B 21 77 0 98 50 15 14 19 0 C 3 F8F 120 253 0 373 170 55 63 85 0 0 3 F8F 19 31 0 55 0 1 3 0 0 3 F8F 1 8 0 55 0 1 3 0 0 3 FEE 300 846 0 1146 426 257 260 201 0 11 FEE 300 846 0 13 9 13 6 0 11 FFF 10 31 0 150 56 25 35 34 0 0 1 FFF 18 16 0 34	EKF	8	22	0	30	6	11	5	8	o	C	30
F88 21 77 0 98 50 15 14 19 0 C F8F 120 253 0 373 170 55 63 85 0 0 0 7 F8F 19 31 0 50 27 4 7 12 0 <td< td=""><td>EHH</td><td>4</td><td>17</td><td>0</td><td>21</td><td>9</td><td>2</td><td>5</td><td>5</td><td>0</td><td>C</td><td>21</td></td<>	EHH	4	17	0	21	9	2	5	5	0	C	21
F68 21 77 0 98 50 15 14 19 0 C F8E 120 253 0 373 170 55 63 85 0 C 3 F8H 1 8 0 50 27 4 7 12 0 0 F8H 1 8 0 55 0 1 3 0 0 FEE 300 846 0 1146 428 257 260 201 0 0 11 FEE 300 846 0 1146 428 257 260 201 0 0 11 FEE 300 846 0 114 13 9 13 6 0 0 11 FEF 61 79 0 140 65 27 28 20 0 0 1 FFF 18 16 0 34 18 3 7 6 0 0 0 0<												
FBE 120 223 0 373 170 55 63 85 0 0 3 FBF 19 31 0 50 27 4 7 12 0 0 3 FEBH 1 8 0 5 0 1 3 0 0 FEE 300 846 0 1146 428 257 260 201 0 11 FEE 300 846 0 1146 428 257 260 201 0 11 FEE 300 846 0 1146 428 257 280 20 0 11 FEE 10 31 0 41 13 9 13 6 0 0 11 FEF 18 16 0 31 11 2 0 0 1 FFF 18 16 0 53	F 88	21	.77	0	98	50	15	14	19	0	ç	98
rpr 1 y 31 0 20 27 4 7 12 0 0 FBH 1 8 0 5 5 0 1 3 0 0 FEB 82 243 0 325 142 47 56 80 0 0 31 FEE 300 846 0 1146 420 257 260 201 0 0 11 FEF 61 79 0 140 65 27 28 20 0 0 11 FEF 61 79 0 140 65 27 28 20 0 0 11 FEF 10 31 0 41 13 9 13 6 0 0 1 FFF 18 16 0 34 18 3 7 6 0 1 0 0 1 FFF 18 16 0 34 18 3 7 6	FBE	120	253	Ő	373	170	55	63	85	0	Q	373
FEB B2 243 0 325 142 47 56 86 0 0 11 3 0 0 11 3 0 0 37 57 0 1 3 0 0 37 57 0 1 3 0 0 11 5 0 0 13 57 260 201 0 0 11 11 56 86 0 0 11 11 75 6 57 260 201 0 0 11	r07 684	14	31	U A	20	27	4	1	12	0	0	50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	o	v	۲	9	v	1	3	U	U	4
FEE 300 846 0 1146 428 257 260 201 0 0 11 FEF 61 79 0 140 65 27 28 20 0 C 1 FEF 10 31 0 41 13 9 13 6 0 0 1 FFB 25 28 0 53 27 28 20 0 C 1 FFB 25 28 0 53 27 6 5 15 0 0 1 FFF 18 16 0 34 18 3 7 6 0 C 1 FFH 18 16 0 34 18 3 7 6 0 C 1 FHF 18 16 0 34 18 3 7 10 0 C 1 FHF 18 16 0 53 14 13 15 11 0	FEB	82	243	Ó	325	142	47	56	80	n	n	325
FEF 61 79 0 140 65 27 28 20 0 0 1 FEH 10 31 0 41 13 9 13 6 0 0 1 FFH 10 31 0 41 13 9 13 6 0 0 1 FFH 18 16 0 34 18 3 7 6 0 0 1 FFH 18 16 0 34 18 3 7 6 0 0 0 1 FFH 1 5 0 6 1 3 1 1 0 0 0 FHB 2 5 0 7 3 1 1 2 0 0 FHB 2 5 0 7 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>FFF</td> <td>300</td> <td>846</td> <td>ŏ</td> <td>1146</td> <td>428</td> <td>257</td> <td>260</td> <td>201</td> <td>ŏ</td> <td>ŏ</td> <td>1146</td>	FFF	300	846	ŏ	1146	428	257	260	201	ŏ	ŏ	1146
FEH 10 31 0 41 13 9 13 6 0 0 FFB 25 28 0 53 27 6 5 15 0 0 1 FFF 57 93 0 150 56 25 35 34 0 0 1 FFF 18 16 0 34 18 3 1 1 0 0 1 FFF 18 16 0 34 18 3 1 1 0 0 1 FFF 18 16 0 53 14 13 15 11 0 <td>FEF</td> <td>61</td> <td>79</td> <td>ŏ</td> <td>140</td> <td>65</td> <td>27</td> <td>28</td> <td>20</td> <td>õ</td> <td>č</td> <td>140</td>	FEF	61	79	ŏ	140	65	27	28	20	õ	č	140
FFB 25 28 0 53 27 6 5 15 0 0 1 FFF 57 93 0 150 56 25 35 34 0 0 1 FFF 18 16 0 34 18 3 7 6 0 C 1 FFH 1 5 0 6 1 3 1 1 0 C 1 FHB 2 5 0 7 3 1 1 2 0 0 FHB 2 5 0 7 3 1 1 0 <t< td=""><td>FEH</td><td>10</td><td>31</td><td>0</td><td>41</td><td>13</td><td>9</td><td>13</td><td>ŧ</td><td>Ó</td><td>0</td><td>41</td></t<>	FEH	10	31	0	41	13	9	13	ŧ	Ó	0	41
FF8 25 28 0 53 27 6 5 15 0 0 FFE 57 93 0 150 56 25 35 34 0 0 1 FFF 18 16 0 34 18 3 7 6 5 15 0 0 1 FFH 1 5 0 6 1 3 1 1 0 C FH8 2 5 0 7 3 1 1 2 0 0 FH8 2 5 0 7 3 1 1 2 0 0 FH8 2 5 0 7 3 1 1 2 0 0 FH4 1 5 0 6 2 3 0 1 0 0 0 FH4 1 9 0 10 1 0 0 0 0 0 0 0 0 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	FFB	25	28	0	53	27	6	5	15	C	C	53
FFF 18 16 0 34 18 3 7 6 0 C FFH 1 5 0 6 1 3 1 1 0 C FHB 2 5 0 7 3 1 1 2 0 0 FHE 6 47 0 53 14 13 15 11 0 C FHE 1 5 0 6 2 3 0 1 0 0 HBB 7 46 0 53 39 6 5 3 0 0 HBB 7 46 0 53 39 6 5 3 0 0 HBB 7 46 0 53 39 6 5 3 0 0 HBB 7 46 0 53 39 6 5 3 0 0 1 HBF 1 9 0 10 5 <t< td=""><td>FFE</td><td>57</td><td>93</td><td>Q</td><td>150</td><td>56</td><td>25</td><td>35</td><td>34</td><td>0</td><td>0</td><td>150</td></t<>	FFE	57	93	Q	150	56	25	35	34	0	0	150
FFR 1 2 0 c 1 3 1 1 0 C FH6 2 5 0 7 3 1 1 2 0 0 FH6 2 5 0 7 3 1 1 2 0 0 FHF 1 5 0 6 2 3 0 1 0 0 0 FHH 0 1 0 1 1 0 0 0 0 0 0 0 FHH 0 1 0 1 1 0	FFF 864	18	16	0	34	18	3	?	ć	o	Ç	34
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	2	U	c	Ŧ	3	1	Ť	U	C	0
FHE 6 47 0 53 14 13 15 11 0 0 FHF 1 5 0 6 2 3 0 1 0 0 FHF 1 5 0 6 2 3 0 1 0 0 FHH 0 1 0 1 1 0 0 0 0 HBB 7 46 0 53 39 6 5 3 0 0 HBB 7 46 0 53 39 6 5 3 0 0 HBE 26 102 0 128 49 24 20 35 0 0 1 HBH 1 9 0 10 5 2 1 2 0 0 1 HBH 1 9 0 10 4 1 2 3 0 0 1 HEE 90 382 0 472	EHB	2	5	0	7	2	1	1	,	0	0	,
FHF 1 5 0 6 2 3 0 1 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1	FHE		47	ŏ	53	14	13	15	11	ŏ	č	53
FHH 0 1 0 1 1 0 0 0 0 0 HBB 7 46 0 53 39 6 5 3 0 0 HBE 26 102 0 128 49 24 20 35 0 0 1 HBF 1 9 0 10 5 2 1 2 0 0 HBH 1 9 0 10 4 1 2 3 0 0 1 HEB 40 123 0 163 72 26 22 43 0 0 1 HEE 90 382 0 472 156 101 84 131 0 0 4 HEF 7 30 0 37 12 5 10 10 0 0 HEF 7 30 0 37 12 5 10 10 0 0 0 0 0 <t< td=""><td>FHF</td><td>ĩ</td><td>5</td><td>ŏ</td><td>6</td><td>2</td><td>3</td><td>ó</td><td>-1</td><td>ŏ</td><td>ŏ</td><td>6</td></t<>	FHF	ĩ	5	ŏ	6	2	3	ó	-1	ŏ	ŏ	6
HBB 7 46 0 53 39 6 5 3 0 0 HBE 26 102 0 128 49 24 20 35 0 0 1 HBF 1 9 0 10 5 2 1 2 0 0 HBH 1 9 0 10 4 1 2 3 0 0 1 HBH 1 9 0 10 4 1 2 3 0 0 1 HEB 40 123 0 163 72 26 22 43 0 0 1 HEE 90 382 0 472 156 101 84 131 0 0 4 HEF 7 30 0 37 12 5 10 10 0 0 HEF 7 30 0 37 12 5 10 10 0 0 HEH	FHH	ō	1	Ó	1	ī	ō	ō	ō	ō	ō	ĩ
HBB 7 46 0 53 39 6 5 3 0 0 HBE 26 102 0 128 49 24 20 35 0 0 1 HBF 1 9 0 10 5 2 1 2 0 0 1 HBH 1 9 0 10 4 1 2 3 0 0 HEB 40 123 0 163 72 26 22 43 0 0 1 HEE 90 382 0 472 156 101 84 131 0 0 4 HEF 7 30 0 37 12 5 10 10 0 0 HEH 2 17 0 19 6 7 1 5 0 0 0												
HBE 26 102 0 128 49 24 20 35 0 C 1 HBF 1 9 0 10 5 2 1 2 0 0 HBH 1 9 0 10 4 1 2 3 0 0 HEB 40 123 0 163 72 26 22 43 0 0 1 HEE 90 382 0 472 156 101 84 131 0 0 4 HEF 7 30 0 37 12 5 10 10 0 0 HEH 2 17 0 19 6 7 1 5 0 0 0	HBB	7	46	0	53	39	6	5	3	0	0	53
HBF 1 9 0 10 5 2 1 2 0 0 HBH 1 9 0 10 4 1 2 3 0 0 HEB 40 123 0 163 72 26 22 43 0 0 1 HEE 90 382 0 472 156 101 84 131 0 0 4 HEF 7 30 0 37 12 5 10 10 0 0 HEH 2 17 0 19 6 7 1 5 0 0	HBE	26	102	0	128	49	24	20	35	0	C	128
HDH I Y U IU 4 I Z 3 0 0 HEB 40 123 0 163 72 26 22 43 0 0 1 HEE 90 382 0 472 156 101 84 131 0 0 4 HEF 7 30 0 37 12 5 10 10 0 0 HEH 2 17 0 19 6 7 1 5 0 0	HOF	1	9	Q	10	5	2	1	2	o	0	10
HEB 40 123 0 163 72 26 22 43 0 0 1 HEE 90 382 0 472 156 101 84 131 0 0 4 HEF 7 30 0 37 12 5 10 10 0 0 HEH 2 17 0 19 6 7 1 5 0 0 0	181	1	4	a	10	4	1	z	Э	0	C	10
HEE 90 382 0 472 156 101 84 131 0 0 4 HEF 7 30 0 37 12 5 10 10 0 4 HEH 2 17 0 19 6 7 1 5 0 0	NER	40	1 2 2	^	143	79	24		4.9	~	•	149
HEF 7 30 0 37 12 5 10 10 0 0 HEH 2 17 0 19 6 7 1 5 0 0	HEE	90	382	ŏ	472	156	101	64 84	131	ő	ŏ	472
	HEF	7	30	õ	37	12	- 5	10	10	ŏ	ŏ	37
	HEH	ź	17	ō	19	6	7	ī	5	õ	,č	19

APPENDIX II. HOOK DESERVATIONS BY DEPTH AND HOOK SPACING (B=BAITED, E=EMPTY, H=HALIBUT, F=OTHER FISH) TABLE THREE. CRUISE II (CHELSEA) ÷....

HOOK Comb	< 75	DEPTH IN 75-125	FATHOMS > 125	TOTAL	12	18	HOOK 21	SPACING 24	IN FEET 36	42	TOTAL	
HFB HFE HFF HFH	2 7 0 1	5 23 6 2	0 0 0	7 30 6 3	3 8 0 1	1 9 3 1	2 3 2 0	1 10 1 1	0 0 0	0 0 0	7 30 6 3	
ННВ ННЕ ННР ННР	2 3 1 1	7 18 3 0	0 0 0	9 21 4 1	5 8 2 0	2 3 0 0	2 3 0 0	0 7 2 1	0 0 0	0 0 0	9 21 4 1	
+TOTAL	10772	31196	0	41968	17409	8836	7454	8269	o	C	41968	
8888 EEEE FFFF HHHH	141 2476 6 0	388 6772 1 0	0 0 0	529 9248 7 0	314 2972 6 0	131 2293 0 0	33 2163 1 0	51 1820 C	0 0 0	6 0 0 0	529 9248 7 0	
*TOTAL	2623	7161	0	9784	3292	2 424	2197	1871	0	C	9784	
≠SKATES ≠HOOKS	127 11026	378 31952	0	505 42978	146 17701	111 9058	107 7668	141 8551	C C	0	505 42978	
#8 #E #F #H	2768 7314 746 198	7995 21334 1825 798	0 0 0	10763 28648 2571 996	5239 11041 1045 376	2024 6353 485 196	1461 5521 522 164	2039 5733 519 260	0 0 0	0 0 0	10763 28648 2571 996	
ннх хнн нхн	6 6 4	28 28 28	0 0 0	34 34 32	15 15 11	5 5 9	5 5 3	9 9	000	C 0 0	34 34 32	
XHFX XFHX XBHX XBHX XHEX XEEX XFEX XFBX XBFX	18 68 62 273 283 893 959 323 272	68 114 317 287 1071 1062 2345 2311 730 819	0 0 0 0 0 0 0 0 0	80 132 385 349 1344 1345 3238 3270 1053 1091	21 39 186 168 479 484 1276 1315 500 486	27 34 64 270 280 663 663 667 150 162	14 32 52 232 232 232 697 695 166 186	24 27 83 363 352 593 237 257	000000000000000000000000000000000000000		86 132 385 349 1344 1345 3238 3270 1053 1091	
8,E,H 8,E,E	171	609	0	780	351	129	109	191	0	0	780	
APPENDIX I	I. HOC	IK OBSERV	ATIONS BY	DEPTH	AND HOOK	SPACING	(8=BAITE	D, E+EMPT	r, H=HAL	IBUT, F	OTHER F	ISH)
HOOK		DEPTH IN	FATHONS				ноок	SPACING 3	IN FEET			
COMB	< 75	75-125	> 125	TOTAL	12	18	21	24	36	42	TOTAL	
BB BE BF BH	201 214 33 0	1049 1954 163 244	1960 3016 463 56	3210 5184 659 300	1363 1937 282 80	3 35 3 0	1717 2769 305 208	0 C C	0 0 0	127 443 69 12	3210 5184 659 300	
EB EE EF EH	224 268 35 1	1992 6816 441 674	3008 10938 1285 200	5224 18022 1761 875	1957 4329 564 134	32 350 23 0	2794 11263 891 652	C 0 0 0	0 0 0	441 2080 283 89	5224 18022 1761 875	
FB FE FF FH	25 43 7 0	157 432 53 39	478 1264 303 26	660 1739 363 65	280 564 134 16	6 20 1 0	307 886 167 38	0 C C C	0 0 0 0	67 269 61 11	660 1739 363 65	
НВ НЕ Н Г НН	0 1 0 0	219 713 28 74	58 185 34 20	277 899 62 94	69 148 10 7	0 0 0	189 664 47 81	0 C C	0 0 0	19 87 5 6	277 899 62 94	
+TOTAL	1052	15048	23294	39394	11874	473	22978	0	C	4069	39394	
888 885 88F 88H	95 90 15 0	385 534 67 52	881 900 144 23	1361 1524 226 75	571 660 99 23	0 3 0 0	757 785 113 50	C C C C C	0 0 0	33 76 14 2	1361 1524 226 75	
BEB BEE BEF BEH	85 112 16 0	580 1142 90 120	934 1717 289 34	1599 2971 395 154	710 1024 160 29	4 30 1 0	783 1642 186 116	0 0 0	0 0 0	102 275 48 9	1599 2971 395 154	
BFB BFE BFF BFH	11 19 3 0	52 86 14 9	138 249 61 8	201 354 78 17	99 142 37 4	1 2 0 0	65 170 34 12	0 C C C	0 0 0	16 40 7 1	201 354 78 17	
8HB Bhé Bhf Bhh	0 0 0	59 161 7 14	9 30 14 3	68 191 21 17	23 48 4 3	0 0 0	44 137 15 12	0000	0 0 0	1 6 2 2	68 191 21 17	
EB B EBE	92	552	911	1555	666	2	808	ç	0	. 79	1555	

APPENDIX II. HOOK OBSERVATIONS BY DEPTH AND HOOK SPACING (B=BAITED, E=EMPTY, H=HALIBUT, F=OTHER FISH) TABLE THREE. CRUISE II (CHELSEA)

•

-

_....

59

HODK CGMB	< 75	DEPTH IN 75-125	FATHOMS > 125	TOTAL	12	18	HÖQK 21	SPACIN€ 24	IN FEET 36	42	TOTAL
EEB EEE EEF EEH	115 133 16 1	1140 4829 296 453	1722 8111 815 135	2977 13073 1127 589	1042 2819 331 91	25 299 20 0	1632 8443 599 435	с с с	0 0 0	278 1512 177 63	2977 13073 1127 589
£F8 €F£ €FF EFH	11 20 3 0	82 297 30 25	262 812 181 11	355 1129 214 36	139 339 72 10	4 18 1 0	169 585 104 18	с с с	0 0 0	43 187 37 8	355 1129 214 36
£ HB £ HE E HF E HH	0 1 0 0	134 469 16 53	38 131 16 10	172 601 32 63	43 83 4 4	0 0 0 0	115 451 25 57	0 C C C	0 C 0 0	14 67 3 2	172 601 32 63
F B B F B E F B F F B H	14 9 2 0	46 86 7 17	138 277 56 3	198 372 65 20	102 138 34 5	1 4 1 0	82 185 25 13		0 0 0	13 45 5 2	198 372 65 20
FEB FEE FEF FEH	21 19 3 0	82 286 23 37	264 816 148 17	367 1121 174 54	14 3 348 59 9	3 15 2 0	182 587 71 36	0 0 0 0	0 0 0	39 171 42 9	367 1121 174 54
FFB FFE FFF FFH	3 4 0 0	12 31 7 1	69 169 55 5	84 204 62 6	36 71 23 2	1 0 0	42 98 23 2	с 0 0 0	0 0 0 0	35 16 2	84 204 62 6
FHB FHE FHF FHH	00000	8 28 1 1	5 16 3 1	13 44 4 2	3 11 1 0	0 0 0	7 26 3 1	с с с с с	0 0 0	3 7 0 1	13 44 4 2
Н88 Н88 Н8 f Н8н	0 0 0	60 134 4 19	21 32 3 1	81 166 7 20	20 41 3 4	0 0 0	59 110 3 16	с 0 с	0 0 0	2 15 1 C	81 166 7 20
HEB HEE HEF HEH	1 0 0 0	163 457 28 53	42 120 14 7	206 577 42 60	44 87 12 4	0 0 0	151 427 23 51	с с с	0 0 0	11 63 7 5	206 577 42 60
HFB HFE HFF HFH	0 0 0	8 14 2 4	5 22 5 1	13 36 7 5	5 4 1 0	0 0 0	7 29 5 5	с с с	0 0 0	1 3 1 6	13 36 7 5
ННВ ННЕ ННЕ ННЕ	0 0 0	14 50 4 5	6 4 1 5	2C 54 5 1C	0 5 1 0	0 0 0	19 45 4 9	с с с	0 0 0	1 4 C 1	20 54 5 10
*TOTAL	1044	14861	22993	36898	11776	467	22687	c	0	3968	38898
8888 EEEE FFFF HKHM	46 68 C D	158 3537 0 0	483 6283 15 2	687 9888 15 2	266 1917 9 0	257 0 0	407 6598 5 2	с с с	0 0 0	14 1116 1 0	687 9888 15 2
*TOTAL	114	3695	6783	10592	2192	257	7012	c	0	1131	10592
≓SKATES ≠HGOKS	e 1060	187 15235	301 23595	496 3989C	98 11972	479	291 23269	с с	0	101 4170	496 39890
⊭B ⊭£ ⊭F ≠H	451 532 76 1	3443 10059 692 1041	5536 15649 2103 307	943C 26240 2871 1349	3684 7050 1000 238	41 411 27 0	5041 15818 1420 990	с с с с с с с	0 0 0	664 2961 424 121	9430 26240 2871 1349
ННХ ХНН НХН	С 0 0	68 68 76	11 14 9	79 82 85	6 7 8	0 0 0	68 70 72	C C	0 0 0	5 5	79 82 85
XHFX XFHX XBBX XBHX XHEX XFEX XFEX XFEX XF8X XF8X XBFX	0 0 2 2 86 50 66	48 72 399 450 1306 1229 805 818 285 310	65 48 108 107 353 371 2458 2507 940 908	113 120 507 557 1661 1602 3345 3394 1275 1284	19 31 133 285 259 1102 1100 548 557	0 0 0 40 46 12 6	84 6P 338 386 1215 1178 1693 1714 588 590	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	10 21 36 21 161 165 514 534 127 131	113 120 507 1661 1662 3349 3394 1275 1284
8, É, H 8, E, F	1 92	866 510	204 1601	1071 2203	252 868	0 16	756 1055	C C	0 0	63 264	1071 2203

APPENDIX II. HOOK OBSERVATIONS BY DEPTH AND HOOK SPACING (B=BAITED, E=EMPTY, H=HALIBUT, F=OTHER FISH) TABLE FOUR. CRUISE III (REPUBLIC)

,

60

HODK Comb	< 75	DEPTH IN 75-125	FATHOMS > 125	TOTAL	12	18	H00K 21	SPACING 24	IN FEET 36	42	TOTAL
88 86 8f 8h	803 675 179 31	174 383 52 7	0 0 0	977 1058 231 36	0000	640 616 142 28	0 0 0	с с с с с	278 296 63 7	59 146 26 3	977 1058 231 38
EB EE EF EH	709 3520 633 115	406 5572 733 42	0 0 0	1115 9092 1366 157	0000	652 4393 630 74	0 0 0	0 0 0 0	312 2381 373 38	151 2318 363 45	1115 9092 1366 157
FB FE FF FH	162 644 206 25	36 750 213 5	0 0 0	198 1394 419 30	0000	119 649 208 13	0 0 0	0 C C	56 383 131 10	23 362 80 7	198 1394 419 30
HB HE HF HH	34 119 17 9	4 41 6 1	0 0 0	38 160 23 10	0000	26 77 11 5	0 0 0	0 C C	6 39 10 2	6 44 2 3	30 160 23 10
*TOTAL	7881	8425	0	16306	0	8283	0	C	4385	3638	16306
888 885 88f 88h	448 250 73 17	68 86 15 1	0000	516 336 88 18	0 0 0	337 213 65 15	0 0 0	0 C C	160 92 17 1	19 31 6 2	516 336 88 18
BEB BEE BEF BEH	251 310 78 27	66 273 32 5	0 0 0	317 583 110 32	0 0 0 0	198 332 56 23	0 0 0	с 0 с	92 164 27 6	27 67 27 3	317 583 110 32
BF 8 BFE BFF BFH	48 89 36 5	6 37 9 0	0000	54 126 45 5	0 0 0	37 71 29 4	0 0 0	0 C C	14 38 11 0	3 17 5 1	54 126 45 5
8 H B 8 H E 8 H F 8 H H	12 13 3 3	1 6 0 0	0 0 0	13 19 3 3	0 0 0	12 13 1 2	0 0 0	0 0 0 0 0	0 5 2 0	1 1 C 1	13 19 3 3
EBB EBE EBF EBH	266 337 77 12	91 272 31 5	0 0 0 0	357 609 108 17	0 0 0	233 342 58 11	0 0 0	0 0 0	94 167 35 5	30 100 15 1	357 609 108 17
ËEB EEE EEF EEH	331 2601 429 70	295 4581 559 31	0 0 0	626 7182 986 101	0000	350 3489 459 38	0 0 0	с с с	177 1859 252 30	99 1834 277 33	626 7182 988 101
EFB Efe Eff Efh	71 418 117 19	24 534 158 2	0 0 0	9§ 952 275 21	0 0 0	51 433 132 5	0 0 0	с с с	28 247 82 10	16 272 61 6	95 952 275 21
EHB Eme Ehf Ehh	15 82 9 5	3 32 5 1	0 0 0	18 114 14 6	0 0 0	9 54 7 2	0 0 0	с с с	23 6 2	4 37 1 2	18 114 14 6
FBB FBE FBF FBH	64 71 21 1	11 17 6 0	0 0 0	75 88 27 1	0 0 0	55 48 14 1	0 0 0	с с с	14 29 9 0	6 11 4 c	75 88 27 1
FEB FEE FEF FEH	92 431 94 14	31 569 130 4	0 0 0	123 1000 224 18	0 0 0	74 451 101 11	0 0 0	с С С	32 267 75 1	17 282 48 6	123 1000 224 18
FFB FFE FFF FFH	34 122 47 0	4 160 43 3	0 0 0	38 282 90 3	00000	26 134 44 3	000000	с 0 с	86 33 0	4 62 13 C	38 282 90 3
ғнв ғне ғнғ ғнн	4 14 5 1	0 2 1 0	0 0 0 0	4 16 6 1	0 0 0	2 6 3	0 0 0	0 C C	1 7 2 0	1 3 1 0	4 16 6 1
H88 H8E H8F H8H	17 10 4 1	1 3 0 0	0 0 0	18 13 4 1	0 0 0	12 8 3 1	0 0 0	с с с	3 2 1 0	3 3 0 0	18 13 4 1
HEB HEE HEF HEH	17 85 15 2	8 24 5 2	0 0 0	25 109 20 4	0000	17 50 9 1	0 0 0	с с с	4 24 10 1	4 35 1 2	25 109 20 4

61

.

APPENDIX II. HODK OBSERVATIONS BY DEPTH AND HOOK SPACING (B-BAITED, E-EPPTY, H-HALIBUT, F-OTHER FISH) TABLE FIVE. CRUISE IV (ALASKA QUEEN II)

HOOK Comb	< 75	DEPTH IN 75-125	FATHOMS > 125	TOTAL	12	18	HOOK 21	SPACING 24	IN FRET 36	42	TOTAL	
HFB Hfe Hff Hfh	6 5 6 0	1 5 0	0 0 0	7 10 6 0	0 0 0	4 5 2 0	0 0 0	0 0 0	3 3 4 0	0 2 0	7 10 6 0	
ННВ ННЕ ННҒ ННН	3 6 0 0	0 1 0 0	0 0 0	3 7 0 0	0 0 0	3 2 0 0	0 0 0	0 0 0 0	0 2 0 0	0 3 0 0	3 7 0 0	
*TOTAL	7714	8260	0	15974	0	817 2	0	o	4272	3530	15974	
BBBB EEEE FFFF KHHH	286 2003 14 0	36 3850 10 0	0 0 0	322 5853 24 0	0 0 0	203 2862 10 0	0 0 0	с с с	113 1518 12 0	1473 2 0	322 5853 24 0	
*TOTAL	2303	3896	0	6199	0	3075	0	٥	1643	1481	6199	
₽SKATES ₽HOOKS	167 8048	165 8590	0 C	332 16638	0 0	111 8394	0	0 0	113 4490	108 3746	332 16638	
#8 #6 #F #H	172 7 5088 1049 184	629 6884 1022 55	0 0 0	2356 11972 2071 239	0 0 0	1447 5825 1000 122	0 0 0	6 C C C C	667 3182 590 59	242 2965 481 58	2356 11972 2071 239	
ннх Хнн Нхн	9 9 3	1 1 2	0 0 0	10 10 5	0 0 0	5 5 2	0 0	0 G C	2 2 1	3 3 2	10 10 5	
XHFX XFHX XHBX XHBX XHEX XHEX XFEX XFEX XFBX XFBX XFBX	34 47 62 226 217 1246 1207 309 344	12 8 13 77 80 1461 1437 68 104		46 55 70 303 297 2707 2644 377 448	0 0 0 0 0 0 0 0 0 0 0 0 0	22 23 46 53 149 1264 1232 231 274			20 20 12 73 71 745 711 102 124	4 12 12 81 84 698 701 44 50	46 55 70 71 303 297 2707 2644 377 448	
ВэЕэН ВэЕэF	94 478	30 172	0	124 650	0 0	81 358	0	C C	27 189	16 103	174 650	
APPENDIX II TABLE SIX.	. HOO CRUIS	K OBSERV	ATIONS BY UBLIC)	DEPTH	AND HOOK	SPACING	(B=BAITE	D≠ E=E⊁P	TY, H=HAL	IBUT, F	=OTHER F	ISH)
HOOK Comb	< 75	DEPTH IN 75-125	FATHŪMS > 125	TOTAL	12	18	H00K 21	SPACING 24	IN FEET 36	42	TOTAL	
BB BE BF BH	130 258 90 6	0 0 0	516 1787 161 108	646 2045 251 114	397 1027 148 35	0 0 0	188 656 74 64	С С С С	33 186 17 3	28 176 12 12	646 2045 251 114	
EB EE EF EH	246 368 145 6	0 0 0	1736 5409 837 853	1982 5777 982 659	992 2375 397 255	0 0 0 0	653 1467 244 260	0 C C C	168 091 178 155	169 1044 163 189	1982 5777 982 859	
FB FE FF FH	102 127 72 4	0 0 0	179 829 167 87	281 956 239 91	167 370 110 34	0 0 0 0	77 239 57 24	с с с с	20 174 24 22	17 173 48 11	281 956 239 91	
НВ НЕ Н <i>F</i> НН	8 8 1 0	0 0 0 0	124 826 97 190	132 834 98 190	49 248 29 66	0 0 0	60 259 26 62	ê C C C	13 143 20 17	1C 184 23 45	132 834 58 190	
*TOTAL	1571	Ċ	13906	15477	6699	0	4410	0	2064	2304	15477	
888 886 88f 88h	47 61 22 0	0 0 0	193 271 30 18	240 332 52 18	162 185 38 10	0 0 0	60 106 13 7	с с с	9 23 1 0	9 18 0 1	240 332 52 18	
8EB BEE BEF BEH	118 86 43 4	0 0 0	709 747 179 106	827 833 222 110	452 408 116 38	0 0 0	245 284 66 45	0 0 0 0	58 73 26 16	72 68 14 11	827 833 222 110	
8FB BFE BFF BFH	42 29 17 1	0 0 0 0	57 69 23 11	99 98 40 12	64 53 23 6	0 0 0	26 29 15 4	с с с	4 11 0 2	5 5 2 C	99 98 40 12	
BHB BHE BHF BHH	3 3 0 0	0 0 0	33 54 11 8	36 57 11 8	13 16 4 2	0 0 0	16 35 7 5	0 C C	3 0 0 0	4 6 0 1	36 57 11 8	
E B B E B E E B F E B H	59 140 40 6	0 0 0	268 1279 110 71	327 1419 150 77	186 699 83 22	00000	107 453 48 42	0 0 0 0	20 133 11 3	14 134 8 10	327 1419 150 77	

APPENDIX II. HOOK OBSERVATIONS BY DEPTH AND HOOK SPACING (B=BAITED, E=EMPTY, H=HALIBUT, F=OTHER FISH) TABLE FIVE. CRUISE IV (ALASKA QUEEN II)

нсок		DEPTH IN	FATHOMS				HOOK	SPACING	IN ∮ EET		
COMB	< 75	75-125	> 125	TOTAL	12	18	21	24	36	42	TOTAL
6 E B	80	0	728	808	381	0	280	ç	78	69	808
LEF	71	ő	469	540	209	ŏ	128	0	106	97	540
EEH	2	0	510	512	156	0	147	С	88	121	512
EFB	39	0	87	126	72	0	33	ç	14	. 7	126
EFE EFF	68 32	ů ů	593 98	130	253 51	ő	29	c	127	32	130
EFH	3	0	55	58	20	0	17	C	16	5	58
6 H B	3	0	61	64	26	0	29	ç	6	3	64
EHF	1	ő	62	63	18	0	14	C	110	134	63
EMH	0	0	124	124	41	0	37	0	14	32	124
FBB	20	0	30	50	36	0	9	c	3	2	50
FBF	27	0	128	182	25	ö	7	C C	14	10	36
FBH	0	0	10	10	2	0	7	с	0	1	10
FEB	37	0	153	190	99	0	60	c	18	13	190
FEE FEF	58 29	0	492 98	55C 127	203	0	128	Ċ	107 27	112	550 127
FEH	0	Ō	70	70	18	Ō	19	Ő	20	13	70
FFB	21	0	27	48	30	o	15	с	0	3	48
FFE	28 22	0	100	128	46 30	0	26 11	C C	21	35	128
FFH	ō	õ	7	7	3	ŏ	3	č	ĭ	ć	7
FHB	1	0	13	14	8	0	4	c	2	c	14
FHE FHE	3	C	51 11	54 11	20	0	13	C C	12	9 C	54 11
FFH	õ	ŏ	11	11	4	ō	3	õ	2	2	ii
HB6	4	o	19	23	12	o	10	0	1	C	23
HBE	3	0	85	88	34	0	37	ç	9	e	86
нвн	ō	õ	- 8	8	1	ŏ	ž	č	ō	ō	8
HEB	6	0	124	130	52	0	56	c	10	12	130
HEE	2	0	455	457	131	0	135	ç	86	105	457
HEH	ő	ő	151	151	41	ő	43	č	27	40	151
HFB	٥	с	8	8	1	o	3	c	2	2	8
HFL	ç	0	63	63	18	0	21	Ċ	14	10	63
HFH	0	õ	12	13	5	0	ő	0 0	2	é	13
HF8	0	٥	14	14	0	o	10	с	2	2	14
HHE	0	0	117	117	42	0	33	Ó	12	30	117
866 868	0	ő	41	41	18	õ	15	č	1	7	41
*TOTAL	1550	٥	13706	15256	6642	0	4355	c	2012	2247	15256
	16	0	73	91	60	0	20	^	,	0	
t E E	123	ŏ	2463	258é	1136	ŏ	541	č	393	516	2586
FFFF H644	з 0	o C	3 11	11	8	0	2	C O	0	1	11
ATCTAL	140	0	2650	2600	1216	0	844	·	205	520	2400
- TUTAL	477		2990	2077	1610	v			393	520	2077
#SKATES #HOOKS	21 1592	0	200 14106	221 15698	57 6756	0	55 4465	C C	52 2116	57 2361	221 15698
#B	486	0	2586	3072	1611	0	987	c	241	233	3072
≠E	779	Ö	8990	9769	4064	ŏ	2662	ŏ	1432	1611	9769
≠r ≠H	17	0	1259	1276	395	ŏ	415	0	200	251	1276
ных	0	0	141	141	47	0	43	c	15	36	141
XHH	ŏ	õ	143	143	47	ŏ	45	č	16	35	143
нхн	0	0	172	172	47	O	50	C	29	46	172
XHFX XFHX	2 8	0	167 148	169 156	47 59	0	51 45	C	35 38	36 14	169
хнвх	15	č	221	236	95	ŏ	102	č	23	16	236
XHEX	12 16	0	197 1359	209	67 408	0	114 438	с с	6 240	22 289	205 1375
XEMX	12	0	1404	1416	424	Ó	431	Ŏ	260	301	1416
XEFX	282	0	1524	1806	748	ŏ	445	č	318	295	1806
XFBX XBFX	203	0	340	543 477	331	0	144	C	38	30	543 477
		-				•		•			
89E9F	25	0	501 726	526 968	188 527	0	244	C C	44 94	50 57	526 968

APPENDIX II. HOOK OBSERVATIONS BY DEPTH AND HOOK SPACING (B-BAITED, E-EMPTY, H-HALIBUT, F-OTHER FISH) TABLE SIX. CRUISE V (REPUBLIC) 2_____

HOOK	< 75	DEPTH IN 75-125	FATHONS > 125	TOTAL	12	18	HOOK 21	SPACING 24	IN FEET 36	42	TOTAL
BB BE BF	300 285 134	1202 2540 332	112 323 36	1614 3148 502	1104 1545 249	000	323 908 139	с с с	110 357 63	77 338 51	1614 3148 502
E8 EE EF FH	281 423 220	2572 6790 974 874	321 1333 184 147	3174 8546 1378	1567 3157 451 339	000	915 2575 404 307	C C C C	350 1223 238 227	342 1591 285 162	3174 8546 1378
F8 FE FF FH	134 216 123	308 993 176	38 180 25	480 1389 324	244 458 108	0000	125 412 88	0 0 0	56 243 49 26	55 276 79	480 1389 324
НВ НЕ НF НН	6 17 1	193 875 89 173	15 143 15 35	216 1035 105 208	110 350 37 78	0000	52 304 28 71	C 0 0 0	35 223 24 45	19 158 16 14	216 1035 105 208
*TOTAL	2165	18384	2936	23485	9957	0	6730	c	3296	3502	23485
888 885 88F 88H	154 77 67 1	489 567 89 50	42 60 6 3	685 704 162 54	522 436 104 35	0 0 0	109 169 34 11	6 6 6	35 59 10 5	19 40 14 3	685 704 162 54
BEE BEF BEH	117 93 65 3	916 1240 199 140	93 170 38 14	1126 1503 302 157	585 752 127 65	0 0 0	360 405 94 31	0 C C C	103 160 43 35	78 186 38 26	1126 1503 302 157
8F8 8FE 8FF 8FH	56 38 38 1	117 166 27 11	10 18 5 1	183 222 70 13	108 98 34 5	0000	48 69 17 3	с с с	14 34 8 3	13 21 11 2	183 222 70 13
8 H B 8 H E 8 H F 8 H H	2 2 0	48 116 12 26	1 6 1 4	51 124 13 30	29 69 9 17	0 0 0	13 23 3 8	с с с	6 19 0 2	3 13 1 3	51 124 13 30
E B B E B E E B F E B H	77 157 43 2	582 1651 188 129	59 225 26 8	718 2033 257 139	451 924 107 77	0000	166 630 82 29	0 C C C	56 240 36 15	45 239 32 18	718 2033 257 139
EEB EEE EEF EEH	86 227 91 9	1256 4308 592 521	177 932 117 89	1519 5467 800 619	753 1913 246 212	0000	414 1704 236 183	0 C C	165 758 139 125	187 1092 179 99	1519 5467 800 619
EFB EFE EFF EFH	43 123 47 4	137 661 115 51	26 129 17 11	206 913 179 66	95 283 52 19	0000	54 271 54 22	C 0 0 0	28 166 26 15	29 193 47 10	290 913 179 66
EHB EHE EHF EHH	3 10 1 0	115 580 60 110	9 104 9 23	127 694 70 133	62 212 18 46	00000	27 212 19 47	0 C C 0	23 150 21 30	15 120 12 10	127 694 70 133
FBB FBE FBF FBH	63 47 23 1	76 183 34 15	10 25 3 0	149 255 60 16	90 115 30 9	0 0 0 0	34 72 16 3	с с с	16 26 11 3	9 42 3 1	149 255 60 16
FEB FEE FEF FEH	74 78 56 2	231 589 105 51	29 118 18 12	334 785 179 65	152 234 52 15	0 0 0	91 242 53 19	с с с	47 138 32 20	44 171 42 11	334 785 179 65
FF8 FFE FFF FFH	35 50 36 0	33 108 22 11	2 20 2 1	70 178 60 12	34 51 19 4	0000	19 52 13 4	0 0 0 0	9 26 10 3	8 49 18 1	70 178 60 12
FHB FHE FHF FHH	3 2 0 0	6 54 8 12	2 9 2 2	11 65 10 14	5 15 5 6	0 0 0	5 18 3 3	C C C	1 18 1 5	0 14 1 0	11 65 10 14
НВВ НВЕ НВГ НВН	5 2 1 0	42 121 15 13	0 12 1 2	47 135 17 15	32 65 4 7	0 0 0	11 31 6 4	0 0 0 0	2 25 5 3	2 14 2 1	47 135 17 15
HEB HEE HEF HEH	2 13 2 0	131 529 57 145	14 87 9 30	147 629 68 175	67 218 19 43	0 0 0	32 188 13 68	0 C 0	25 131 18 41	23 92 18 23	147 629 68 175

APPENDIX II. HOOK OBSERVATIONS BY DEPTH AND HOOK SPACING (B=BAITED, E=EMPTY, H=HALIBUT, F=OTHER FISH) TABLE SEVEN. CRUISE VI (REPUBLIC) •

64

HOOK		DEPTH IN	FATHONS				ноок	SPACING	TN CEST		
COMB	< 75	75-125	> 125	TOTAL	12	18	21	24	36	42	TOTAL
HFB	0	13	0	13	7	0	2	0	2	2	13
HFE	1	52	11	64	23	0	19	C	12	10	64
HFF	0	11	0	11	3	0	3	0	4	1	11
HFH	0	11	3	14	4	0	3	C	5	2	14
ннв	0	24	3	27	14	o	7	с	5	1	27
HHE	0	114	23	1 3 7	50	ō	47	ň	21	č	127
HHF	ŏ	ġ		12	5	ň	2	ŏ		,	137
ннн	ŏ	25	5	30	ģ	ŏ	13	č	7	ĩ	30
+TGTAL	2133	18119	2891	23143	9871	0	6644	c	3213	3415	23143
8888	83	240	22	345	283	•	4.7	•	1.6		34.5
FFFF	119	2736	663	2518	1197	Ň	1122	ž	44.2	74	343
FFFF	12		1	17	****	Ň	1122	ž	102	171	3910
нннн	ō	3	â	3	ó	ŏ	í	č	2	ć	3
+===							-	•	-	Ū	2
TUTAL	214	2983	686	3883	1477	0	1167	c	482	75 7	3003
#SKATES	32	265	45	342	86	0	86	c	83	87	342
#HOOKS	2197	18649	2981	23827	10043	0	6816	Ó	3379	3589	23827
#8	726	4313	488	5527	3043	٥	1425	c	561	498	5527
≠E	961	11398	2017	14376	5571	õ	4267	õ	2104	2434	14276
#F	484	1587	263	2334	848	ŏ	667	Ň	202	440	2224
AH.	26	1351	213	1590	581	ŏ	461	ž	323	217	1500
						•	.01	·	331	231	1340
ннх	0	147	29	176	69	0	57	с	38	12	17e
хнн	0	148	29	177	69	0	56	С	37	13	177
нхн	0	169	35	204	54	0	75	С	49	26	204
XHFX	2	156	23	181	65	٥	49	с	40	27	181
XFHX	10	141	26	177	53	Ó	55	ċ	41	28	177
XHBX	16	347	25	388	197	Ó	93	ė	62	36	388
хвнх	8	370	19	397	228	ŏ	82	ř	4.8	20	207
XHEX	31	1467	229	1727	600	õ	486	ŏ	361	280	1727
XEHX	28	1467	237	1732	584	ŏ	401	č	374	200	1727
XFFX	419	1860	332	2611	870	ă	778	č	442	520	2612
XFFX	425	1809	345	2570	855	š	762	Ň	415	520	2011
YERY	267	580	76	022	472	Š	102	0	- 34	526	2574
VBEV	248	431	40	763	401	0	243	U A	104	104	923
ADEA	203	021	00	724	401	U	200	C	113	94	954
BaEaH	14	752	63	829	405	0	173	C	142	109	829
8, E, F	310	1104	162	1576	694	0	462	C	214	206	1576

APPENDIX II. HOOK OBSERVATIONS BY DEPTH AND HOOK SPACING (B=BAITED, E=EMPTY, H=HALIBUT, F=OTHER FISH) TABLE SEVEN. CRUISE VI (REPUBLIC) ÷.....

:

.

RUN		DEPTH IN	FATHOMS	HOOK SPACING IN FEFT							
LENGTH	< 75	75-125	> 125	TOTAL	12	18	21	24	30	42	TOTAL
TABLE ONE.	ALL C	RUISES C	OMBINED								
#HOOK S	26904	100507	42605	170016	66218	17931	53457	8551	9993	13866	170016
1 H	418	3329	1405	5152	1732	298	1876	241	470	535	5152
2 H	14	231	158	403	127	10	155	8	50	53	403
3 Н	1	25	31	57	21	0	26	1	5	4	57
4 H	0	1	4	5	0	C	4	0	a	1	5
5 H	0	1	2	3	0	0	1	0	1	1	3
вн	0	U	1	1	1	C	0	0	0	0	1
TABLE THU.	CRUIS	E I (CHE	LSEA)								
#HOOK S	2981	26061	1923	30985	19746	0	11239	0	C	0	30985
1 H	23	606	65	694	447	0	247	0	0	0	694
2 H	0	12	2	14	10	٥	4	0	0	0	14
TABLE THREE	E. CRU	15E II (CHELSEA)								
HOOKS	11026	31952	0	42978	17701	9058	7668	8551	0	0	42978
1 H	185	742	0	927	346	156	154	241	0	C	927
2 H	5	28	0	33	15	5	5	8	0	0	33
3 Н	1	C	0	1	0	0	0	1	Û	0	1 1
TABLE FOUR	. CRUI	SE 111 (REPUBLIC)							
#HOOKS	1060	15235	23595	39890	11972	479	23269	0	0	4170	39890
1 н	1	595	272	1171	224	G	637	0	0	110	1171
2 H	0	64	12	76	7	ί	65	0	0	4	76
3 Н	υ	5	2	7	0	Û	6	0	0	1	7
5 H	0	C	1	1	0	C	1	0	0	0	1
TABLE FIVE	CRUI	SE IV (A	LASKA QU	EEN II)							
≓HOOK S	8048	8590	0	16638	0	8394	c	ú	4498	3746	16638
1 H	166	53	Ó	219	Ō	112	Ō	ō	55	52	219
2 H	9	1	0	10	0	5	0	0	2	3	10
TABLE SIX.	CRUIS	E V (REP	UBLIC)								
#HODKS	1592	Ú	14106	15698	6756	0	4465	0	2116	2361	15698
1 H	17	ů	920	937	281	Ó	306	ŏ	167	183	937
2 H	Ó	Ŭ	119	119	35	Ó	35	ō	15	34	119
3 Н	C	C	24	24	12	0	9	Ó	1	2	24
4 H	0	G	4	4	C	Û	3	0	0	1	4
5 H	0	Û	1	1	0	C	0	0	0	1	1
8 H	0	Û	1	1	1	C	0	0	0	0	1
TABLE SEVEN	N. CRU	LSE V1 (REPUBLIC)							
#HOOKS	2197	18649	2981	23827	10043	ú	6816	0	3379	3589	23827
1 H	26	1030	148	1204	434	C	332	0	248	190	1204
2 H	0	126	25	151	60	0	46	0	33	12	151
3 н	0	2C	5	25	9	Ģ	11	0	4	1	25
4 H	0	1	0	1	0	0	1	0	0	0	1
5 H	0	1	0	1	0	0	0	0	1	C	1

APPENDIX III. FREQUENCY OF RUNS OF HALIBUT BY DEPTH AND HOOK SPACING.